首页> 外文期刊>Pattern recognition letters >Learning with few examples for binary and multiclass classification using regularization of randomized trees
【24h】

Learning with few examples for binary and multiclass classification using regularization of randomized trees

机译:使用随机树的正则化学习一些用于二分类和多分类的示例

获取原文
获取原文并翻译 | 示例

摘要

The human visual system is often able to learn to recognize difficult object categories from only a single view, whereas automatic object recognition with few training examples is still a challenging task. This is mainly due to the human ability to transfer knowledge from related classes. Therefore, an extension to Randomized Decision Trees is introduced for learning with very few examples by exploiting interclass relationships. The approach consists of a maximum a posteriori estimation of classifier parameters using a prior distribution learned from similar object categories. Experiments on binary and multiclass classi-fication tasks show significant performance gains
机译:人类的视觉系统通常只能从单个视图中学习识别困难的物体类别,而很少训练示例的自动物体识别仍然是一项艰巨的任务。这主要归因于人类从相关类别中转移知识的能力。因此,引入了对随机决策树的扩展,以通过利用类间关系学习很少的示例。该方法包括使用从相似对象类别中获悉的先验分布对分类器参数进行最大后验估计。二进制和多类分类任务的实验显示出显着的性能提升

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号