首页> 外文期刊>Pattern recognition letters >New rank methods for reducing the size of the training set using the nearest neighbor rule
【24h】

New rank methods for reducing the size of the training set using the nearest neighbor rule

机译:使用最近邻居规则减少训练集大小的新等级方法

获取原文
获取原文并翻译 | 示例

摘要

Some new rank methods to select the best prototypes from a training set are proposed in this paper in order to establish its size according to an external parameter, while maintaining the classification accuracy. The traditional methods that filter the training set in a classification task like editing or condensing have some rules that apply to the set in order to remove outliers or keep some prototypes that help in the classification. In our approach, new voting methods are proposed to compute the prototype probability and help to classify correctly a new sample. This probability is the key to sorting the training set out, so a relevance factor from 0 to 1 is used to select the best candidates for each class whose accumulated probabilities are less than that parameter. This approach makes it possible to select the number of prototypes necessary to maintain or even increase the classification accuracy. The results obtained in different high dimensional databases show that these methods maintain the final error rate while reducing the size of the training set.
机译:提出了一些新的从训练集中选择最佳原型的排序方法,以便在保持分类精度的同时根据外部参数确定其大小。在分类任务(如编辑或压缩)中过滤训练集的传统方法具有一些适用于训练集的规则,以消除异常值或保留一些有助于分类的原型。在我们的方法中,提出了新的投票方法来计算原型概率并帮助正确分类新样本。此概率是对训练集进行排序的关键,因此使用从0到1的相关因子为累积概率小于该参数的每个类别选择最佳候选者。这种方法可以选择维持甚至提高分类精度所必需的原型数量。在不同的高维数据库中获得的结果表明,这些方法在减小训练集大小的同时,还能保持最终的错误率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号