首页> 外文期刊>Pattern recognition letters >Application of Bayes linear discriminant functions in image classification
【24h】

Application of Bayes linear discriminant functions in image classification

机译:贝叶斯线性判别函数在图像分类中的应用

获取原文
获取原文并翻译 | 示例

摘要

In statistical image classification it is usually assumed that feature observations given class labels are independently distributed. Even in the case when training sample is formed by dependent feature observations, the feature observations to be classified are usually assumed to be independent from training sample. In this paper we propose the original method of the incorporation of spatial information into the per-pixel classifiers. Our approach is based on the retraction of the independence assumption by proposing stationary Gaussian random field (GRF) model for features. The conditional distribution of class label of observation to be classified is assumed to be dependent on its spatial adjacency within the spatial framework of the training sample. For a given training sample, plug-in version of the Bayes discriminant function (PBDF) is proposed for classification. Performance of the proposed PBDF is tested and compared with ones ignoring dependence among feature observations to be classified and training sample. For illustration the image of figure corrupted by the additive GRF is analyzed. The advantage of the proposed classifier against the competing one is shown visually and numerically in the first example. In the second example, three spatial sampling designs for training data are compared on the basis of the actual error rate values of the proposed PBDF. For the remotely sensed image, the advantage of the proposed classification method against popular unsupervised classification method is shown in terms of visual evaluation and empirical errors of misclassification.
机译:在统计图像分类中,通常假定给定类别标签的特征观测值是独立分布的。即使在通过从属特征观察形成训练样本的情况下,通常也假设要分类的特征观察独立于训练样本。在本文中,我们提出了将空间信息合并到每个像素分类器中的原始方法。我们的方法是通过提出针对特征的平稳高斯随机场(GRF)模型,基于对独立性假设的退缩。假设要分类的观察类别标签的条件分布取决于其在训练样本空间框架内的空间邻接性。对于给定的训练样本,建议使用贝叶斯判别函数(PBDF)的插件版本进行分类。测试了所提出的PBDF的性能,并将其与忽略要分类的特征观测值和训练样本之间的依赖性的性能进行了比较。为了说明,分析了由添加剂GRF破坏的图形图像。在第一个示例中以视觉和数字方式显示了所提出的分类器相对于竞争者的优势。在第二个示例中,根据建议的PBDF的实际错误率值比较了用于训练数据的三种空间采样设计。对于遥感图像,从视觉评估和错误分类的经验误差方面显示了所提出的分类方法相对于流行的无监督分类方法的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号