首页> 外文期刊>Pattern recognition letters >Toward a compression-based self-organizing recognizer: Preliminary implementation of PRDC-CSOR
【24h】

Toward a compression-based self-organizing recognizer: Preliminary implementation of PRDC-CSOR

机译:面向基于压缩的自组织识别器:PRDC-CSOR的初步实现

获取原文
获取原文并翻译 | 示例

摘要

The present paper introduces a new data analyzer, a compression-based self-organizing recognizer, the PRDC-CSOR (Pattern Representation scheme using Data Compression - Compression based Self ORganiz-ing Recognizer), with a preliminary application to image data. The PRDC-CSOR is an extension of the authors' previously proposed pattern representation scheme using data compression (PRDC). Contrary to the traditional statistical-model-based recognition system methods, the PRDC-CSOR constructs itself using incoming data only. The basic tool, compressibility, is an approximation of the Kolmogorov complexity K(x) defined in an individual text x as a countermeasure against the Shannon entropy H(X) defined on an ensemble X. Due to this feature, a highly automatic self-organizing recognition system becomes possible as demonstrated in this paper.
机译:本文介绍了一种新的数据分析器,一种基于压缩的自组织识别器,PRDC-CSOR(使用数据压缩的模式表示方案-基于压缩的自组织识别器),并将其初步应用于图像数据。 PRDC-CSOR是作者先前提出的使用数据压缩(PRDC)的模式表示方案的扩展。与传统的基于统计模型的识别系统方法相反,PRDC-CSOR仅使用传入数据进行构造。可压缩性是一种基本工具,它是针对单个文本x定义的Kolmogorov复杂度K(x)的近似值,作为对整体X上定义的Shannon熵H(X)的对策。如本文所示,组织识别系统成为可能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号