首页> 外文期刊>Pattern recognition letters >Adaptive morphology using tensor-based elliptical structuring elements
【24h】

Adaptive morphology using tensor-based elliptical structuring elements

机译:使用基于张量的椭圆结构元素的自适应形态

获取原文
获取原文并翻译 | 示例

摘要

Mathematical Morphology is a common strategy for non-linear filtering of image data. In its traditional form the filters used, known as structuring elements, have constant shape once set. Such rigid structuring elements are excellent for detecting patterns of a specific shape, but risk destroying valuable information in the data as they do not adapt in any way to its structure.We present a novel method for adaptive morphological filtering where the local structure tensor, a well-known method for estimation of structure within image data, is used to construct adaptive elliptical structuring elements which vary from pixel to pixel depending on the local image structure. More specifically, their shape varies from lines in regions of strong single-directional characteristics to disks at locations where the data has no prevalent direction.
机译:数学形态学是对图像数据进行非线性滤波的常用策略。以传统形式使用的过滤器(称为结构元件)一经设置便具有恒定的形状。这种刚性结构元素非常适合检测特定形状的图案,但由于它们无法以任何方式适应其结构,因此存在破坏数据中有价值的信息的风险。我们提出了一种新的自适应形态学滤波方法,其中局部结构张量为用于估计图像数据内的结构的众所周知的方法用于构造自适应椭圆结构元素,其根据局部图像结构而在像素之间变化。更具体地说,它们的形状从单向性强的区域中的线到数据没有普遍方向的位置处的磁盘变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号