首页> 外文期刊>Pattern recognition letters >Fast gradient vector flow computation based on augmented Lagrangian method
【24h】

Fast gradient vector flow computation based on augmented Lagrangian method

机译:基于增强拉格朗日法的梯度向量流快速计算

获取原文
获取原文并翻译 | 示例

摘要

Gradient vector flow (GVF) and generalized GVF (GGVF) have been widely applied in many image processing applications. The high cost of GVF/GGVF computation, however, has restricted their potential applications on images with large size. Motivated by progress in fast image restoration algorithms, we reformulate the GVF/GGVF computation problem using the convex optimization model with equality constraint, and solve it using the inexact augmented Lagrangian method (IALM). With fast Fourier transform (FFT), we provide two novel simple and efficient algorithms for GVF/GGVF computation, respectively. To further improve the computational efficiency, the multiresolution approach is adopted to perform the GVF/GGVF computation in a coarse-to-fine manner. Experimental results show that the proposed methods can improve the computational speed of the original GVF/GGVF by one or two order of magnitude, and are more efficient than the state-of-the-art methods for GVF/GGVF computation.
机译:梯度矢量流(GVF)和广义GVF(GGVF)已广泛应用于许多图像处理应用程序中。但是,GVF / GGVF计算的高成本限制了它们在大尺寸图像上的潜在应用。基于快速图像恢复算法的进步,我们使用具有等式约束的凸优化模型来重新构造GVF / GGVF计算问题,并使用不精确的增强拉格朗日方法(IALM)对其进行求解。通过快速傅立叶变换(FFT),我们分别为GVF / GGVF计算提供了两种新颖,简单而有效的算法。为了进一步提高计算效率,采用了多分辨率方法以从粗到精的方式执行GVF / GGVF计算。实验结果表明,所提出的方法可以将原始GVF / GGVF的计算速度提高一到两个数量级,并且比最新的GVF / GGVF计算方法更有效。

著录项

  • 来源
    《Pattern recognition letters》 |2013年第2期|219-225|共7页
  • 作者单位

    Biocomputing Research Centre, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, China;

    Biocomputing Research Centre, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, China;

    Biocomputing Research Centre, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, China;

    Key Laboratory of Machine Perception (MOE), School of EECS, Peking University, Beijing, 100871, China;

    Biocomputing Research Centre, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, China,Biometrics Research Centre, Department of Computing, The Hong Kong Polytechnic University, Kowloon, Hong Kong;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    gradient vector flow; convex optimization; augmented lagrangian method; fast fourier transform; multiresolution method;

    机译:梯度矢量流凸优化增强拉格朗日法快速傅立叶变换;多分辨率方法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号