首页> 外文期刊>Pattern recognition letters >Classification of clouds in satellite imagery using over-complete dictionary via sparse representation
【24h】

Classification of clouds in satellite imagery using over-complete dictionary via sparse representation

机译:使用稀疏表示的过完整字典对卫星图像中的云进行分类

获取原文
获取原文并翻译 | 示例

摘要

Satellite imagery provides distribution information of cloud in a wide range of spatial and temporal scales. To improve the accuracy of weather forecasting and enhancing the effectiveness of climate monitoring, it is important to study the classification of clouds in satellite imagery. Motivated by the concept addressed in sparse representation using over-complete dictionary, a novel method for cloud data classification in satellite imagery was proposed. The intensity and spectral features attributed to different cloud types of samples were used to construct an adaptive over-complete dictionary in order to represent the cloud samples sparsely, followed by extracting the dictionary feature via sparse coding of samples. Then, the sparse representation coefficients matrix of training sample sets for specific cloud type was used to form a projection subspace. After orthonormal processing for the projection axis of the projection subspace, an effective sparse classifier was designed. Finally, the problem of cloud type identification for the test sample was solved according to the similarity between the test sample and specific cloud type subspace. Experiments were conducted on meteorological satellite data, the promising results indicated that the proposed approach can identify clear water (CW), clear land (CL), cumulonimbus (CB), altostratus & altocumulus (AS&AC), cirrostratus & cirrus-densus (CS&CD) and nimbostratus & cumulus (NS&CU) in the satellite images effectively, the classification accuracy is higher than that of the support vector machine classifier and traditional sparse representation classification classifier.
机译:卫星图像可在广泛的时空范围内提供云的分布信息。为了提高天气预报的准确性并增强气候监测的有效性,研究卫星图像中云的分类非常重要。基于使用超完备字典进行稀疏表示的概念,提出了一种新的卫星图像云数据分类方法。使用归因于不同云类型样本的强度和光谱特征来构建自适应过完全字典,以便稀疏地表示云样本,然后通过对样本进行稀疏编码来提取字典特征。然后,使用针对特定云类型的训练样本集的稀疏表示系数矩阵来形成投影子空间。在对投影子空间的投影轴进行正交处理之后,设计了一种有效的稀疏分类器。最后,根据测试样本与特定云类型子空间之间的相似性,解决了测试样本的云类型识别问题。在气象卫星数据上进行了实验,有希望的结果表明,该方法可以识别出清水(CW),清澈的土地(CL),积雨云(CB),高地层和高积云(AS&AC),卷云和卷云(CS&CD)以及在卫星图像中有效地利用了Nimbostratus&cumulus(NS&CU),其分类精度高于支持向量机分类器和传统的稀疏表示分类器。

著录项

  • 来源
    《Pattern recognition letters》 |2014年第1期|193-200|共8页
  • 作者单位

    Faculty of Information Science & Technology, Ningbo University, Zhejiang, Ningbo 315211, China;

    Faculty of Information Science & Technology, Ningbo University, Zhejiang, Ningbo 315211, China;

    Faculty of Information Science & Technology, Ningbo University, Zhejiang, Ningbo 315211, China;

    Faculty of Information Science & Technology, Ningbo University, Zhejiang, Ningbo 315211, China;

    Faculty of Information Science & Technology, Ningbo University, Zhejiang, Ningbo 315211, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Over-complete dictionary; Sparse representation; Dictionary feature extraction; Satellite imagery; Cloud recognition;

    机译:字典过于完整;稀疏表示;字典特征提取;卫星图像;云识别;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号