首页> 外文期刊>Pattern recognition letters >Discriminative restricted Boltzmann machine for invariant pattern recognition with linear transformations
【24h】

Discriminative restricted Boltzmann machine for invariant pattern recognition with linear transformations

机译:判别受限的Boltzmann机器,用于线性变换的不变模式识别

获取原文
获取原文并翻译 | 示例

摘要

How to make a machine automatically achieve invariant pattern recognition like human brain is still very challenging in machine learning community. In this paper, we present a single hidden-layer network TIClassRBM for invariant pattern recognition by incorporating linear transformations into discriminative restricted Boltzmann machine. In our model, invariant feature extraction and pattern classification can be implemented simultaneously. The mapping from input features to class label is represented by two groups of weights: transformed weights that connect hidden units to data, and pooling weights that connect pooling units yielded by probabilistic max-pooling to class label. All weights play an important role in the invariant pattern recognition. Moreover, TIClassRBM can handle general transformations contained in images, such as translation, rotation and scaling. The experimental studies on the variations of MNIST and NORB datasets demonstrate that the proposed model yields the best performance among some comparative models.
机译:在机器学习社区中,如何使机器自动实现像人脑一样的不变模式识别仍然是非常具有挑战性的。在本文中,我们通过将线性变换合并到判别受限的Boltzmann机器中,提出了一种用于不变模式识别的单个隐藏层网络TIClassRBM。在我们的模型中,不变特征提取和模式分类可以同时实现。从输入要素到类标签的映射由两组权重表示:将隐藏的单元连接到数据的已转换权重,以及将概率最大池产生的池化单元连接到类标签的池权重。所有权重在不变模式识别中都起着重要作用。此外,TIClassRBM可以处理图像中包含的常规转换,例如平移,旋转和缩放。对MNIST和NORB数据集的变化进行的实验研究表明,所提出的模型在某些比较模型中产生了最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号