首页> 外文期刊>Pattern recognition letters >Trilateral constrained sparse representation for Kinect depth hole filling
【24h】

Trilateral constrained sparse representation for Kinect depth hole filling

机译:Kinect深度孔填充的三边约束稀疏表示

获取原文
获取原文并翻译 | 示例

摘要

Due to measurement errors or interference noise, Kinect depth maps exhibit severe defects of holes and noise, which significantly affect their applicability to stereo visions. Filtering and inpainting techniques have been extensively applied to hole filling. However, they either fail to fill in large holes or introduce other artifacts near depth discontinuities, such as blurring, jagging, and ringing. The emerging reconstruction-based methods employ underlying regularized representation models to obtain relatively accurate combination coefficients, leading to improved depth recovery results. Sparse representation facilitates retaining the saliency features of natural images and is thus more favorite than other regression models in image restoration, e.g. ridge regression. However, its naive applicability to depth map recovery hardly affords satisfactory depth prediction. Motivated by locality learning and bilateral filtering, this paper advocates a trilateral constrained sparse representation for Kinect depth recovery, which considers the constraints of intensity similarity and spatial distance between reference patches and target one on sparsity penalty term, as well as position constraint of centroid pixel in the target patch on data-fidelity term. Learning from the accompanied color image, this method can produce optimal solution to hole-filling problem in terms of depth prediction accuracy. Various experimental results on real-world Kinect maps and public datasets show that the proposed method outperforms state-of-the-art methods in filling effects of both flat and discontinuous regions. (C) 2015 Elsevier B.V. All rights reserved.
机译:由于测量误差或干扰噪声,Kinect深度图显示出严重的孔洞和噪声缺陷,严重影响了其在立体视觉上的适用性。过滤和修补技术已广泛应用于孔填充。但是,它们要么无法填充大孔,要么在深度不连续处附近引入其他伪像,例如模糊,锯齿和振铃。新兴的基于重建的方法采用基础的正则化表示模型来获得相对准确的组合系数,从而改善了深度恢复结果。稀疏表示有助于保留自然图像的显着特征,因此在图像恢复(例如图像恢复)中比其他回归模型更受欢迎。岭回归。然而,其对于深度图恢复的幼稚适用性几乎不能提供令人满意的深度预测。受局部学习和双边滤波的启发,本文提出了一种三边约束稀疏表示形式,用于Kinect深度恢复,该模型考虑了稀疏度惩罚项上参考斑块与目标斑块之间的强度相似性和空间距离的约束,以及质心像素的位置约束。在目标补丁程序上的数据保真度。从伴随的彩色图像中学习,该方法可以在深度预测精度方面为孔填充问题提供最佳解决方案。在真实的Kinect地图和公共数据集上的各种实验结果表明,该方法在平坦区域和不连续区域的填充效果方面均优于最新方法。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Pattern recognition letters》 |2015年第1期|95-102|共8页
  • 作者单位

    Wuhan Univ, Sch Comp, NERCMS, Wuhan 430072, Peoples R China.;

    Wuhan Univ, Sch Comp, NERCMS, Wuhan 430072, Peoples R China.;

    Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore.;

    Wuhan Inst Technol, Sch Comp, Wuhan 430073, Peoples R China.;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sparse representation; Kinect; Depth map; Hole filling;

    机译:稀疏表示;Kinect;深度图;孔填充;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号