首页> 外文期刊>Pattern recognition letters >Application of GRNN neural network in non-texture image inpainting and restoration
【24h】

Application of GRNN neural network in non-texture image inpainting and restoration

机译:GRNN神经网络在非纹理图像修复中的应用

获取原文
获取原文并翻译 | 示例

摘要

Inspired by the connectivity principle of human visual perception, a new inpainting approach based on GRNN neural network is proposed in this paper. The missing regions in this new technique are determined by performing regression analysis on the image data. The missing regions are first separated and sorted according to their size. Then the algorithm proceeds with applying a GRNN network to each one in order to repair their damaged pixels. Simplicity and efficiency are the main advantages of the proposed approach. The performance of the proposed approach is evaluated in three application contexts: text removal, scratch removal, and noise removal. Where possible, we used objective measures (e.g., PSNR) to evaluate the visual quality of the inpainted i rnag:es. The results demonstrate the effectiveness of the proposed approach. (C) 2015 Elsevier B.V. All rights reserved.
机译:在人类视觉感知的连通性原理的启发下,提出了一种新的基于GRNN神经网络的修复方法。通过对图像数据执行回归分析来确定此新技术中的缺失区域。首先将丢失的区域分离并根据其大小进行排序。然后,该算法将GRNN网络应用于每个像素,以修复其损坏的像素。简洁和高效是该方法的主要优势。在三种应用环境中评估了所提出方法的性能:文本删除,暂存器删除和噪声去除。在可能的情况下,我们使用客观指标(例如PSNR)来评估所修补图像的视觉质量。结果证明了该方法的有效性。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号