首页> 外文期刊>Pattern recognition letters >A new adaptive filtering method for removing salt and pepper noise based on multilayered PCNN
【24h】

A new adaptive filtering method for removing salt and pepper noise based on multilayered PCNN

机译:多层PCNN的椒盐噪声自适应滤波新方法。

获取原文
获取原文并翻译 | 示例

摘要

Image de-noising is an important image preprocessing technique, especially how to restore the image corrupted by high density salt and pepper noise is a hotspot of current research. This paper presents an adaptive de-noising method by using the multilayered Pulse Coupled Neural Network (PCNN). By analyzing the firing characteristics of the improved PCNN, a new approach is proposed for setting adaptively the parameters of PCNN based on the elimination of "Mathematics Firing". Through this method, the salt and pepper noise can be located adaptively by the PCNN, and then we propose an improved median filtering method which only uses uncontaminated pixels to determine the median. Finally, by repeating both the noise location and removal of the noise, the varying density salt and pepper noise in the image can be removed gradually. Simulation experiments show that the proposed method performs better compared with the state-of-the-art method for the varying density salt and pepper noise, especially for high density salt and pepper noise, the proposed method performs well on the aspect of removal of salt and pepper noise and protecting image details. (C) 2016 Elsevier B.V. All rights reserved.
机译:图像降噪是一种重要的图像预处理技术,特别是如何恢复高密度盐和胡椒噪声破坏的图像是当前研究的热点。本文提出了一种使用多层脉冲耦合神经网络(PCNN)的自适应去噪方法。通过分析改进型PCNN的触发特性,提出了一种基于消除“数学触发”而自适应地设置PCNN参数的新方法。通过这种方法,PCNN可以自适应地定位盐和胡椒噪声,然后我们提出了一种改进的中值滤波方法,该方法仅使用未受污染的像素来确定中值。最后,通过重复噪声位置和去除噪声,可以逐渐去除图像中变化的密度盐和胡椒噪声。仿真实验表明,与现有技术相比,该方法在变化的盐和胡椒噪声方面表现更好,特别是在高密度盐和胡椒噪声方面,该方法在除盐方面表现良好。和胡椒粉噪音并保护图像细节。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号