首页> 外文期刊>Pattern recognition letters >Multi-Label learning in the independent label sub-spaces
【24h】

Multi-Label learning in the independent label sub-spaces

机译:独立标签子空间中的多标签学习

获取原文
获取原文并翻译 | 示例

摘要

The objective in multi-label learning problems is simultaneous prediction of many labels for each input instance. During the past years, there were many proposed embedding based approaches to solve this problem by considering label dependencies and decreasing learning and prediction cost. However, compressing the data leads to lose part of information included in label space. The idea in this work is to divide the whole label space to some independent small groups which leads to independent learning and prediction for each small group in the main space, rather than transforming to the compressed space. We use subspace clustering approaches to extract these small partitions such that the labels in each group do not include any information to improve the results for the labels in the other groups. According to the experiments on different datasets with various number of features and labels, the approach improves prediction quality with lower computational cost compared to the state-of-the-art. (C) 2017 Elsevier B.V. All rights reserved.
机译:多标签学习问题的目的是为每个输入实例同时预测许多标签。在过去的几年中,提出了许多基于嵌入的方法来解决此问题,方法是考虑标签依赖性并降低学习和预测成本。但是,压缩数据会导致丢失标签空间中包含的部分信息。这项工作的想法是将整个标签空间划分为一些独立的小组,从而导致对主空间中的每个小组进行独立的学习和预测,而不是转换为压缩空间。我们使用子空间聚类方法来提取这些小分区,以使每个组中的标签不包含任何信息来改善其他组中标签的结果。根据对具有各种特征和标签数量的不同数据集的实验,与最新技术相比,该方法以较低的计算成本提高了预测质量。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号