首页> 外文期刊>Pattern recognition letters >A CUDA-based hill-climbing algorithm to find irreducible testors from a training. matrix
【24h】

A CUDA-based hill-climbing algorithm to find irreducible testors from a training. matrix

机译:一种基于CUDA的爬山算法,可从训练中找到不可约的测试员。矩阵

获取原文
获取原文并翻译 | 示例

摘要

Irreducible testors have been used to solve feature selection problems. All the exhaustive algorithms reported for the generation of irreducible testors have exponential complexity. However, several problems only require a portion of irreducible testors (only a subset of all). The hill-climbing algorithm is the latest approach that finds a subset of irreducible testors. So this paper introduces a parallel version of the hill-climbing algorithm which takes advantage of all the cores available in the graphics card because it has been developed on a CUDA platform. The proposed algorithm incorporates a novel mechanism that improves the exploration capability without adding any extra computation at the mutation step, thus increasing the rate of irreducible testors found. In addition, a Bloom filter is incorporated for efficient handling of duplicate irreducible testors. Several experiments with synthetic and real data, and a comparison with other state-of-the-art algorithms are presented in this work. (C) 2017 Elsevier B.V. All rights reserved.
机译:不可约的测试器已用于解决特征选择问题。为生成不可约的测试器而报告的所有穷举算法都具有指数复杂性。但是,几个问题只需要一部分不可简化的测试器(仅是全部子集)。爬山算法是找到不可归约测试者子集的最新方法。因此,本文介绍了并行版本的爬山算法,该算法利用了显卡中的所有可用内核,因为它是在CUDA平台上开发的。所提出的算法结合了一种新颖的机制,该机制提高了探索能力,而无需在突变步骤中添加任何额外的计算,从而提高了不可约测试者的发现率。此外,内置了布隆过滤器,可有效处理重复的不可约测试器。在这项工作中,我们进行了一些合成和真实数据的实验,并与其他最新算法进行了比较。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号