首页> 外文期刊>Pattern recognition letters >Distributed representation learning for knowledge graphs with entity descriptions
【24h】

Distributed representation learning for knowledge graphs with entity descriptions

机译:具有实体描述的知识图的分布式表示学习

获取原文
获取原文并翻译 | 示例

摘要

Recent studies of knowledge representation attempt to project both entities and relations, which originally compose a high-dimensional and sparse knowledge graph, into a continuous low-dimensional space. One canonical approach TransE [2] which represents entities and relations with vectors (embeddings), achieves leading performances solely with triplets, i.e. (head_entity, relation, tail_entity), in a knowledge base. The cutting-edge method DKRL [23] extends TransE via enhancing the embeddings with entity descriptions by means of deep neural network models. However, DKRL requires extra space to store parameters of inner layers, and relies on more hyperparameters to be tuned. Therefore, we create a single layer model which requests much fewer parameters. The model measures the probability of each triplet along with corresponding entity descriptions, and learns contextual embeddings of entities, relations and words in descriptions simultaneously, via maximizing the loglikelihood of the observed knowledge. We evaluate our model in the tasks of knowledge graph completion and entity type classification with two benchmark datasets: FB500K and EN15K, respectively. Experimental results demonstrate that the proposed model outperforms both TransE and DKRL, indicating that it is both efficient and effective in learning better distributed representations for knowledge bases. (C) 2016 Elsevier B.V. All rights reserved.
机译:知识表示的最新研究试图将最初构成高维和稀疏知识图的实体和关系投影到连续的低维空间中。一种典型的方法TransE [2]表示实体和与矢量(嵌入)的关系,在知识库中仅使用三元组即可实现领先的性能,即(head_entity,relation,tail_entity)。先进的方法DKRL [23]通过利用深度神经网络模型增强实体描述的嵌入来扩展TransE。但是,DKRL需要额外的空间来存储内层的参数,并且依赖于更多的超参数进行调整。因此,我们创建了一个单层模型,该模型需要更少的参数。该模型通过最大化观察到的知识的对数似然性,来测量每个三元组的概率以及相应的实体描述,并同时学习实体,关系和描述中单词的上下文嵌入。我们分别使用两个基准数据集:FB500K和EN15K,在知识图完成和实体类型分类任务中评估模型。实验结果表明,所提出的模型优于TransE和DKRL,表明它在学习更好的知识库表示形式方面既高效又有效。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号