首页> 外文期刊>Pattern recognition letters >A study of deep convolutional auto-encoders for anomaly detection in videos
【24h】

A study of deep convolutional auto-encoders for anomaly detection in videos

机译:用于视频异常检测的深度卷积自动编码器的研究

获取原文
获取原文并翻译 | 示例

摘要

The detection of anomalous behaviors in automated video surveillance is a recurrent topic in recent computer vision research. Depending on the application field, anomalies can present different characteristics and challenges. Convolutional Neural Networks have achieved the state-of-the-art performance for object recognition in recent years, since they learn features automatically during the training process. From the anomaly detection perspective, the Convolutional Autoencoder (CAE) is an interesting choice, since it captures the 2D structure in image sequences during the learning process. This work uses a CAE in the anomaly detection context, by applying the reconstruction error of each frame as an anomaly score. By exploring the CAE architecture, we also propose a method for aggregating high-level spatial and temporal features with the input frames and investigate how they affect the CAE performance. An easy-to-use measure of video spatial complexity was devised and correlated with the classification performance of the CAE. The proposed methods were evaluated by means of several experiments with public-domain datasets. The promising results support further research in this area. (c) 2017 Elsevier B.V. All rights reserved.
机译:在自动视频监视中检测异常行为是最近计算机视觉研究中经常出现的话题。根据应用领域的不同,异常会表现出不同的特征和挑战。由于卷积神经网络在训练过程中会自动学习特征,因此近年来它们在对象识别方面取得了最先进的性能。从异常检测的角度来看,卷积自动编码器(CAE)是一个有趣的选择,因为它在学习过程中捕获了图像序列中的2D结构。通过将每帧的重建误差作为异常评分,该工作在异常检测上下文中使用了CAE。通过探索CAE体系结构,我们还提出了一种使用输入帧聚合高级时空特征的方法,并研究它们如何影响CAE性能。设计了一种易于使用的视频空间复杂性度量,并将其与CAE的分类性能相关联。通过使用公共领域数据集的几次实验对提出的方法进行了评估。有希望的结果为该领域的进一步研究提供了支持。 (c)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号