首页> 外文期刊>Pattern Analysis and Applications >Encoding features from multi-layer Gabor filtering for visual smoke recognition
【24h】

Encoding features from multi-layer Gabor filtering for visual smoke recognition

机译:从多层Gabor滤波中编码特征,用于视觉烟雾识别

获取原文
获取原文并翻译 | 示例

摘要

It is a challenging task to accurately recognize smoke from visual scenes due to large variations in smoke shape, color and texture. To improve recognition accuracy, we propose a framework mainly with a robust local feature extraction module based on Gabor convolutional networks. We first propose a Gabor convolutional network, each layer of which mainly consists of Gabor convolution and feature fusion. To fuse feature maps generated by Gabor convolution, we present three Basic Grouping Methods, which divide the feature maps into several groups along orientation axis, scale axis and both of them. To avoid exponential growth of feature maps and preserve discriminative information simultaneously, we propose three element-wise aggregation functions, which are mean, min and max, to combine feature maps in each group. To further improve efficiency, we use local binary pattern to encode hidden and output maps of Gabor convolutional layers. In addition, we use a weight vector to optimize concatenation of histograms for further improvement. Experiments show that our method achieves very outstanding results on smoke, texture and material image datasets. Although the feature extraction step of our method is training-free, our framework consistently outperforms state-of-the-art methods on small smoke datasets, even including deep learning-based methods.
机译:由于烟雾形状,颜色和纹理的大变化,从视觉场景准确地识别烟雾是一项挑战的任务。为了提高识别准确性,我们提出了一个框架,主要是基于Gabor卷积网络的强大局部特征提取模块。我们首先提出了一个杰布尔卷积网络,每层主要由Gabor卷积和特征融合组成。对于Gabor卷积生成的熔断器成像映射,我们呈现了三种基本分组方法,该方法将特征映射划分为沿着方向轴,尺度轴和两个组的几个组。为避免特征映射的指数增长并同时保留鉴别信息,我们提出了三个元素 - 方面聚合函数,即均值,最小和最大值,以组合每个组中的特征映射。为了进一步提高效率,我们使用本地二进制模式来编码Gabor卷积层的隐藏和输出地图。此外,我们使用权重向量来优化直方图的串联以进一步改进。实验表明,我们的方法在烟雾,纹理和材料图像数据集上实现了非常出色的结果。尽管我们方法的特征提取步骤是无培训的,但我们的框架始终如一地优于小型烟雾数据集的最先进的方法,甚至包括基于深度的学习方法。

著录项

  • 来源
    《Pattern Analysis and Applications》 |2020年第3期|1117-1131|共15页
  • 作者单位

    Jiangxi Univ Finance & Econ Sch Informat Technol Nanchang 330032 Jiangxi Peoples R China|Shanghai Normal Univ Coll Informat Mech & Elect Engn Shanghai Peoples R China|China Three Gorges Univ Hubei Key Lab Intelligent Vis Based Monitoring Hy Yichang 443002 Peoples R China;

    Jiangxi Univ Finance & Econ Sch Informat Technol Nanchang 330032 Jiangxi Peoples R China|Yichun Univ Coll Math & Computat Sci Yichun 336000 Jiangxi Peoples R China;

    Jiangxi Univ Finance & Econ Sch Informat Technol Nanchang 330032 Jiangxi Peoples R China;

    Jiangxi Agr Univ Vocat Sch Teachers & Technol Nanchang 330045 Jiangxi Peoples R China;

    Jiangxi Univ Finance & Econ Sch Informat Technol Nanchang 330032 Jiangxi Peoples R China|Jiangxi Sci & Technol Normal Univ Sch Math & Comp Sci Nanchang 330038 Jiangxi Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Smoke recognition; Gabor transform; Gabor convolutional network; Local binary pattern (LBP); Basic grouping method; Aggregation function;

    机译:烟雾识别;Gabor变换;Gabor卷积网络;局部二进制模式(LBP);基本分组方法;聚合函数;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号