首页> 外文期刊>Pattern Analysis and Applications >Pedestrian gender classification using combined global and local parts-based convolutional neural networks
【24h】

Pedestrian gender classification using combined global and local parts-based convolutional neural networks

机译:使用基于全局和局部基于组合的卷积神经网络的行人性别分类

获取原文
获取原文并翻译 | 示例

摘要

The identification of a person's gender plays an important role in various visual surveillance and monitoring applications which are growing more ubiquitously. This paper proposes a method for gender classification of pedestrians based on whole body images which, unlike facial-based methods, allows for observation from different viewpoints. We use a parts-based model that combines global and local information to make inference. Convolutional neural network (CNN) is leveraged for its superior feature learning and classification capability. Our method requires that only the gender label is available for the training images, without the need for any other expensive annotation such as the anatomical parts, key points or other attributes. We trained a CNN on the bounding box containing the whole body (global CNN) or a defined portion of the body (local CNN). Experimental results show that the upper half region of the body is the most discriminative for gender, in comparison with the middle or lower half. The best model is a jointly trained combination of a global CNN and a local upper body CNN, which achieves higher accuracy than previous works on publicly available datasets.
机译:在越来越广泛地使用的各种视觉监视和监视应用程序中,一个人的性别识别起着重要作用。本文提出了一种基于全身图像的行人性别分类方法,与基于面部的方法不同,该方法可以从不同的角度进行观察。我们使用基于零件的模型,该模型结合了全局和局部信息进行推断。卷积神经网络(CNN)具有出色的特征学习和分类功能。我们的方法要求只有性别标签可用于训练图像,而无需任何其他昂贵的注释,例如解剖部位,关键点或其他属性。我们在包含整个身体(全局CNN)或身体的定义部分(局部CNN)的边界框上训练了CNN。实验结果表明,与上半部分或下半部分相比,身体的上半部分对性别的区分最大。最好的模型是全球CNN和本地上身CNN的联合训练组合,与以前对公开数据集所做的工作相比,它具有更高的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号