首页> 外文期刊>Pattern Analysis and Applications >Towards instance-dependent label noise-tolerant classification: a probabilistic approach
【24h】

Towards instance-dependent label noise-tolerant classification: a probabilistic approach

机译:走向依赖实例的标签耐噪分类:一种概率方法

获取原文
获取原文并翻译 | 示例

摘要

Learning from labelled data is becoming more and more challenging due to inherent imperfection of training labels. Existing label noise-tolerant learning machines were primarily designed to tackle class-conditional noise which occurs at random, independently from input instances. However, relatively less attention was given to a more general type of label noise which is influenced by input features. In this paper, we try to address the problem of learning a classifier in the presence of instance-dependent label noise by developing a novel label noise model which is expected to capture the variation of label noise rate within a class. This is accomplished by adopting a probability density function of a mixture of Gaussians to approximate the label flipping probabilities. Experimental results demonstrate the effectiveness of the proposed method over existing approaches.
机译:由于训练标签的固有缺陷,从标记数据中学习变得越来越具有挑战性。现有的标签耐噪声学习机主要设计用于解决随机发生的,与输入实例无关的类条件噪声。但是,相对较少的注意力集中在受输入功能影响的更普通的标签噪声类型上。在本文中,我们尝试通过开发一种新颖的标签噪声模型来解决在存在实例相关标签噪声的情况下学习分类器的问题,该模型有望捕获类中标签噪声率的变化。这是通过采用高斯混合的概率密度函数来近似标签翻转概率来实现的。实验结果证明了该方法相对于现有方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号