首页> 外文期刊>Pattern Analysis and Applications >Blind image deblurring via gradient orientation-based clustered coupled sparse dictionaries
【24h】

Blind image deblurring via gradient orientation-based clustered coupled sparse dictionaries

机译:通过基于梯度方向的聚类耦合稀疏字典进行盲图像去模糊

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we proposed a novel sparse representation-based blind image deblurring algorithm, which exploits the benefits of coupled sparse dictionary, and patch gradient orientation-based sparsifying sub-dictionary learning. We jointly trained coupled dictionaries for blurred and clear image patches to take advantages of the similarity of sparse representation in the blurred and clear image patch pair with respect to their corresponding dictionaries. The first step of the algorithm is to estimate blur kernel from the test image itself which is utilized in generating blur image training set from the clear image training set. Instead of learning a large coupled dictionary, we have proposed to cluster the patches having similar geometric structures and learn smaller sub-dictionaries for each group to improve the effectiveness of sparse modeling of the information in an image. While reconstructing the image, the sparse representation of a blurred image patch is applied to the blur-free dictionary to generate a blur-free image patch. For choosing a sub-dictionary which best describes a particular patch, minimum residue error criterion is formulated. An iterative error compensation mechanism is carried out to enhance the deblurring performance and to compensate for sparse approximation. The performance of proposed deblurring method is evaluated in terms of PSNR, SSIM, ISNR, and visual quality results. The simulation results demonstrate that the proposed method achieves very competitive deblurring performance as compared to other complementary blind deblurring methods.
机译:在本文中,我们提出了一种新颖的基于稀疏表示的盲图像去模糊算法,该算法利用了耦合稀疏字典和基于补丁梯度方向的稀疏子字典学习的优势。我们共同训练了模糊和清晰图像补丁的耦合字典,以利用模糊和清晰图像补丁对中的稀疏表示相对于其对应字典的相似性。该算法的第一步是从测试图像本身估计模糊核,该模糊核用于从清晰图像训练集中生成模糊图像训练集中。代替学习大型耦合字典,我们建议对具有相似几何结构的补丁进行聚类,并为每个组学习较小的子字典,以提高对图像中信息进行稀疏建模的有效性。在重建图像时,将模糊图像补丁的稀疏表示应用于无模糊字典,以生成无模糊图像补丁。为了选择最能描述特定补丁的子词典,制定了最小残留误差准则。执行迭代误差补偿机制以增强去模糊性能并补偿稀疏近似。根据PSNR,SSIM,ISNR和视觉质量结果评估了提出的去模糊方法的性能。仿真结果表明,与其他互补盲去模糊方法相比,该方法具有非常好的竞争性去模糊性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号