首页> 外文期刊>Pattern Analysis and Applications >Region-based facial representation for real-time Action Units intensity detection across datasets
【24h】

Region-based facial representation for real-time Action Units intensity detection across datasets

机译:基于区域的面部表示,可跨数据集实时检测行动单位的强度

获取原文
获取原文并翻译 | 示例

摘要

Most research on facial expressions recognition has focused on binary Action Units (AUs) detection, while graded changes in their intensity have rarely been considered. This paper proposes a method for the real-time detection of AUs intensity in terms of the Facial Action Coding System scale. It is grounded on a novel and robust anatomically based facial representation strategy, for which features are registered from a different region of interest depending on the AU considered. Real-time processing is achieved by combining Histogram of Gradients descriptors with linear kernel Support Vector Machines. Following this method, AU intensity detection models are built and validated through the DISFA database, outperforming previous approaches without real-time capabilities. An in-depth evaluation through three different databases (DISFA, BP4D and UNBC Shoulder-Pain) further demonstrates that the proposed method generalizes well across datasets. This study also brings insights about existing public corpora and their impact on AU intensity prediction.
机译:关于面部表情识别的大多数研究都集中在二进制动作单元(AUs)检测上,而很少考虑其强度的分级变化。本文提出了一种基于面部动作编码系统规模的AUs强度实时检测方法。它基于一种新颖且强大的基于解剖学的面部表示策略,根据所考虑的AU,可以从不同的感兴趣区域中注册特征。通过将梯度描述符直方图与线性核支持向量机相结合来实现实时处理。按照这种方法,可以通过DISFA数据库建立和验证AU强度检测模型,其性能优于以前的方法,没有实时功能。通过三个不同的数据库(DISFA,BP4D和UNBC肩痛)进行的深入评估进一步表明,该方法可以很好地概括数据集。该研究还提供了有关现有公共语料库及其对非盟强度预测的影响的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号