首页> 外文期刊>Pattern Analysis and Applications >Outlier trajectory detection through a context-aware distance
【24h】

Outlier trajectory detection through a context-aware distance

机译:通过上下文感知距离的离群轨迹检测

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an original method to detect anomalous human trajectories based on a new and promising context-aware distance. The input of the proposed method is a set of human trajectories from a video surveillance system. A proper representation of each trajectory is developed based on the polar coordinates of the corresponding sub-trajectories. The main focus of the paper is to highlight a context-aware distance between trajectories. This distance implies a weighted average of the differences in the angle, the Euclidean distance, and the number of points in each trajectory. The distance matrix feeds an unsupervised learning method to extract homogeneous groups (clusters) of trajectories. Finally, an outlier detection method is executed over the trajectories in each cluster. The methodology has been empirically evaluated across four experiments with both artificial and real data sets. The tests results have proved promising and illustrate the effectiveness of this approach for anomalous trajectories detection.
机译:本文提出了一种基于新的且有希望的上下文感知距离的异常人类轨迹检测方法。所提出的方法的输入是来自视频监视系统的一组人体轨迹。基于相应子轨迹的极坐标,可以正确表示每个轨迹。本文的主要重点是强调轨迹之间的上下文感知距离。该距离表示角度,欧几里得距离和每个轨迹中的点数之差的加权平均值。距离矩阵提供了一种无监督的学习方法来提取轨迹的同质组(簇)。最后,对每个聚类中的轨迹执行离群值检测方法。该方法已通过人工和真实数据集的四个实验进行了经验评估。测试结果证明是有希望的,并说明了这种方法对异常轨迹检测的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号