首页> 外文期刊>Pattern Analysis and Applications >Nonlinear sharpening of MR images using a locally adaptive sharpness gain and a noise reduction parameter
【24h】

Nonlinear sharpening of MR images using a locally adaptive sharpness gain and a noise reduction parameter

机译:使用局部自适应锐度增益和降噪参数对MR图像进行非线性锐化

获取原文
获取原文并翻译 | 示例

摘要

Well-defined boundaries are necessary to allow precise delineation of morphological structures from magnetic resonance images. Existing state-of-the-art sharpening techniques like unsharp masking (UM) produce discontinuity artefacts and have multiple operational parameters. Tuning multiple parameters together is cumbersome. A computationally efficient and noise robust nonlinear sharpening scheme which is free from discontinuity and saturation artefacts, with very less number of arbitrary parameters, is proposed in this paper. As an inverse mathematical problem, the sharpened image is computed from the amplified first derivative. To constrain the noise amplification, the local value of the amplification factor is considered as a nonlinear function of local average of absolute directional gradients. The proposed sharpening scheme is compared with two of its best possible alternatives, contrast limited adaptive histogram equalization (CLAHE) and UM in terms of sharpness of the output image, thinness of salient edges, feature preservation, saturation and edge quality degradation due to noise, using perceptual sharpness index (PSI), second-order derivative-based measure of enhancement (SDME), edge model-based blur metric (EMBM), structural similarity index metric (SSIM), peak signal-to-noise ratio (PSNR), saturation evaluation index (SEI) and sharpness of ridges (SOR). The proposed nonlinear sharpening scheme exhibited higher PSI, SDME, PSNR and SSIM and lower EMBM, SOR and computational time, compared to CLAHE and UM. The proposed scheme is found to be superior to the existing state-of-the-art techniques like CLAHE and UM, in terms of sharpness as well as thinness of salient edges in the sharpened image, robustness to noise, discontinuity artefacts, saturation and computational time. Because of minimum number of operational parameters, it is user friendly too.
机译:必须有明确定义的边界,才能从磁共振图像中准确描绘出形态结构。现有的最先进的锐化技术(例如不清晰的蒙版(UM))会产生不连续的伪像,并具有多个操作参数。一起调整多个参数很麻烦。提出了一种计算效率高,噪声鲁棒的非线性锐化方案,该方案不存在不连续性和饱和伪影,具有很少的任意参数。作为逆数学问题,从放大的一阶导数计算出锐化图像。为了限制噪声放大,放大因子的局部值被认为是绝对方向梯度的局部平均值的非线性函数。在输出图像的清晰度,显着边缘的细度,特征保留,饱和度和由于噪声引起的边缘质量下降等方面,将拟议的锐化方案与它的两种最佳替代方案进行了比较:对比度受限的自适应直方图均衡化(CLAHE)和UM。使用感知清晰度指标(PSI),基于二阶导数的增强指标(SDME),基于边缘模型的模糊指标(EMBM),结构相似性指标指标(SSIM),峰值信噪比(PSNR),饱和度评估指数(SEI)和山脊清晰度(SOR)。与CLAHE和UM相比,所提出的非线性锐化方案具有更高的PSI,SDME,PSNR和SSIM,以及更低的EMBM,SOR和计算时间。发现所提出的方案在清晰度和锐化图像中显着边缘的薄度,抗噪性,不连续性伪像,饱和度和计算方面优于现有的最新技术,例如CLAHE和UM时间。由于操作参数的数量最少,因此也是用户友好的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号