首页> 外文期刊>Pattern Analysis and Applications >Object-Based Image Content Characterisation for Semantic-Level Image Similarity Calculation
【24h】

Object-Based Image Content Characterisation for Semantic-Level Image Similarity Calculation

机译:基于对象的图像内容表征,用于语义级图像相似度计算

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an approach to semantic-level image similarity calculation for object-based image retrieval. It is not only suitable for images with single objects, but also for images containing multiple and partially occluded objects. In this approach, contours of objects are used to distinguish different classes of objects in images. We decompose all the contours in an image into segments, and compute features from the segments. The C4.5 decision-tree learning algorithm is used to classify each segment in the images. Each image is represented in a k-dimensional space, where k is the number of classes of objects in all the images.Each dimension represents information about one of the classes. The class information about each class can be obtained through either summing up the number of segments that belong to the class, or summing up the probabilities that each segment belongs to the class. Euclidean distance between images in the κ dimensional space is adopted to compute similarities between images based on either class predictions of segments or probabilities of segment classes. Experimental results show that this approach is effective.
机译:本文提出了一种基于对象的图像检索语义级图像相似度计算方法。它不仅适用于具有单个对象的图像,而且适用于包含多个且部分被遮挡的对象的图像。在这种方法中,对象的轮廓用于区分图像中不同类别的对象。我们将图像中的所有轮廓分解为段,然后从这些段计算特征。 C4.5决策树学习算法用于对图像中的每个片段进行分类。每个图像都在一个k维空间中表示,其中k是所有图像中对象类别的数量,每个维度代表有关一个类别的信息。关于每个类别的类别信息可以通过对属于该类别的段的数量求和,或者对每个段属于该类别的概率求和而获得。 κ维空间中图像之间的欧式距离被用于基于段的类别预测或段类别的概率来计算图像之间的相似度。实验结果表明该方法是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号