首页> 外文期刊>Pattern Analysis and Applications >A Dynamic Sub-vector Weighting Scheme for Image Retrieval with Relevance Feedback
【24h】

A Dynamic Sub-vector Weighting Scheme for Image Retrieval with Relevance Feedback

机译:具有相关反馈的图像检索动态子矢量加权方案

获取原文
获取原文并翻译 | 示例

摘要

In image retrieval with relevance feedback, feature components obtained from low-level descriptors are often weighted to reflect the high-level concepts and a user's subjective perception embodied in the images labelled by the user in the feedback. However, the number of the labelled images is often small and an optimal weighting cannot be achieved in practice because of the singularity of the covariance matrix needed for weighting. To solve this problem, a dynamic sub-vector weighting scheme is proposed in this paper. In this scheme, a multidimensional feature vector is partitioned into multiple sub-vectors whose dimensions are dynamically adjusted to match the small number of available labelled images. Because of the lower dimensionality of the sub-vectors, the optimal weighting can be performed based on these sub-vectors, respectively. The multiple similarity scores obtained from sub-vector comparisons are then combined, as the final score, to rank the database images and determine the retrieval result. Experimental results demonstrated better performance of the proposed weighting scheme than some existing weighting schemes.
机译:在具有相关性反馈的图像检索中,通常对从低级描述符获得的特征分量进行加权,以反映高级概念和用户在反馈中标记的图像中体现的用户主观感知。然而,由于加权所需的协方差矩阵的奇异性,标记图像的数量通常很小,并且在实践中无法实现最佳加权。为了解决这个问题,本文提出了一种动态子矢量加权方案。在该方案中,多维特征向量被划分为多个子向量,其尺寸可以动态调整以匹配少量的可用标记图像。由于子矢量的维数较低,因此可以分别基于这些子矢量执行最佳加权。然后,将从子向量比较中获得的多个相似性分数进行组合,作为最终分数,以对数据库图像进行排名并确定检索结果。实验结果表明,提出的加权方案比某些现有的加权方案具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号