首页> 外文期刊>Pattern Analysis and Applications >A new LDA-KL combined method for feature extraction and its generalisation
【24h】

A new LDA-KL combined method for feature extraction and its generalisation

机译:新的LDA-KL组合特征提取方法及其推广

获取原文
获取原文并翻译 | 示例

摘要

Linear discriminant analysis (LDA) is a well-known feature extraction technique. In this paper, we point out that LDA is not perfect because it only utilises the discriminatory information existing in the first-order statistical moments and ignores the information contained in the second-order statistical moments. We enhance LDA using the idea of a K-L expansion technique and develop a new LDA-KL combined method, which can make full use of both sections of discriminatory information. The proposed method is tested on the Concordia University CENPARMI handwritten numeral database. The experimental results indicate that the proposed LDA-KL method is more powerful than the existing techniques of LDA, K-L expansion and their combination: OLDA-PCA. What is more, the proposed method is further generalised to suit for feature extraction in the complex feature space and can be an effective tool for feature fusion.
机译:线性判别分析(LDA)是一种众所周知的特征提取技术。在本文中,我们指出LDA并不是完美的,因为它仅利用一阶统计矩中存在的歧视性信息,而忽略了二阶统计矩中包含的信息。我们使用K-L扩展技术的思想来增强LDA,并开发一种新的LDA-KL组合方法,该方法可以充分利用两部分歧视性信息。该方法在Concordia大学CENPARMI手写数字数据库上进行了测试。实验结果表明,所提出的LDA-KL方法比现有的LDA,K-L扩展及其组合OLDA-PCA技术更强大。此外,所提出的方法被进一步推广以适合复杂特征空间中的特征提取,并且可以成为有效的特征融合工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号