首页> 外文期刊>Pattern Analysis and Applications >CORES: fusion of supervised and unsupervised training methods for a multi-class classification problem
【24h】

CORES: fusion of supervised and unsupervised training methods for a multi-class classification problem

机译:CORES:针对多类别分类问题的有监督和无监督训练方法的融合

获取原文
获取原文并翻译 | 示例

摘要

This paper describes in full detail a model of a hierarchical classifier (HC). The original classification problem is broken down into several subproblems and a weak classifier is built for each of them. Subproblems consist of examples from a subset of the whole set of output classes. It is essential for this classification framework that the generated subproblems would overlap, i.e. some individual classes could belong to more than one subproblem. This approach allows to reduce the overall risk. Individual classifiers built for the subproblems are weak, i.e. their accuracy is only a little better than the accuracy of a random classifier. The notion of weakness for a multiclass model is extended in this paper. It is more intuitive than approaches proposed so far. In the HC model described, after a single node is trained, its problem is split into several subproblems using a clustering algorithm. It is responsible for selecting classes similarly classified. The main scope of this paper is focused on finding the most appropriate clustering method. Some algorithms are defined and compared. Finally, we compare a whole HC with other machine learning approaches.
机译:本文详细描述了分层分类器(HC)的模型。最初的分类问题分为几个子问题,并且为每个子问题构建了一个弱分类器。子问题由整个输出类集的子集中的示例组成。对于此分类框架而言,至关重要的是生成的子问题将重叠,即某些单独的类可能属于多个子问题。这种方法可以降低总体风险。为子问题构建的单个分类器很弱,即它们的准确性仅比随机分类器的准确性好一点。本文扩展了多类模型的弱点概念。它比到目前为止提出的方法更加直观。在描述的HC模型中,训练了单个节点后,使用聚类算法将其问题分为几个子问题。它负责选择类似分类的类。本文的主要范围集中在寻找最合适的聚类方法。定义并比较了一些算法。最后,我们将整个HC与其他机器学习方法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号