首页> 外文期刊>Pattern Analysis and Applications >Fast training procedure for Viola-Jones type object detectors using Laplacian clutter models
【24h】

Fast training procedure for Viola-Jones type object detectors using Laplacian clutter models

机译:使用拉普拉斯杂波模型的Viola-Jones型物体检测器的快速训练过程

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a fast training strategy for the Viola-Jones (VJ) type object-detection systems. The VJ object- detection system, popular for its high accuracy at real-time testing speeds, has a drawback that it is slow to train. A face detector, for example, can take days to train. In content-based image retrieval (CBIR), where search needs to be performed instantaneously, VJ's long training time is not affordable. Therefore, VJ's method is hardly used for such applications. This paper proposes two modifications to the training algorithm of VJ-type object detection systems which reduces the training time to the order of seconds. Firstly, Laplacian clutter (non-object) models are used to train the weak classifier, thus eliminating the need to read and evaluate thousands of clutter images. Secondly, the training procedure is simplified by removing the time-consuming AdaBoost-based feature selection procedure. An object detector, trained with 500 images, approximately takes 2 s for training in a conventional 3 GHz machine. Our results show that the accuracy of the detector, built with the proposed approach, is inferior to that of VJ for difficult object class such as frontal faces. However, for objects with lesser degree of intra-class variations such as hearts, state-of-the-art accuracy can be obtained. Importantly, for CBIR applications, the fast testing speed of the VJ type object detector is maintained.
机译:本文提出了一种针对Viola-Jones(VJ)型物体检测系统的快速训练策略。 VJ对象检测系统以其在实时测试速度下的高精度而广受欢迎,但缺点是训练速度慢。例如,面部检测器可能需要几天的时间进行训练。在基于内容的图像检索(CBIR)中,需要立即执行搜索,因此VJ漫长的培训时间负担不起。因此,VJ的方法几乎不用于此类应用。本文对VJ型目标检测系统的训练算法提出了两种改进,将训练时间减少到几秒钟。首先,拉普拉斯杂波(非对象)模型用于训练弱分类器,从而消除了读取和评估数千个杂波图像的需要。其次,通过消除耗时的基于AdaBoost的特征选择过程,简化了训练过程。用500张图像训练的对象检测器在传统3 GHz机器中训练大约需要2 s。我们的结果表明,对于难处理的物体类别(例如正面),使用所提出的方法构建的检测器的精度低于VJ的精度。但是,对于诸如心之类的类内差异程度较小的对象,可以获取最新的准确性。重要的是,对于CBIR应用,可以保持VJ型物体检测器的快速测试速度。

著录项

  • 来源
    《Pattern Analysis and Applications》 |2014年第2期|441-449|共9页
  • 作者单位

    Center for Computational Imaging and Simulation Technologies in Biomedicine, Universitat Pompeu Fabra, Barcelona, Spain,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), San Sebastain, Spain;

    Universidad Carlos Ⅲ de Madrid, Madrid, Spain;

    Center for Computational Imaging and Simulation Technologies in Biomedicine, Universitat Pompeu Fabra, Barcelona, Spain,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), San Sebastain, Spain,Catalan Institution for Research and Advanced Studies (ICREA),Barcelona, Spain;

  • 收录信息 美国《科学引文索引》(SCI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Object detection; Haar-like features; Clutter models; Laplacian distribution;

    机译:对象检测;类似Haar的特征;杂波模型拉普拉斯分布;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号