首页> 外文期刊>Pattern Analysis and Applications >Improved nuisance attribute projection for face recognition
【24h】

Improved nuisance attribute projection for face recognition

机译:改进的用于面部识别的讨厌属性投影

获取原文
获取原文并翻译 | 示例

摘要

The illumination variation is one of the well-known problems in face recognition under uncontrolled environments. Several techniques have been presented in the literature to cope up with this problem. Lately, a technique known as Nuisance Attribute Projection (NAP), originally developed for the speaker recognition field was introduced to image processing in order to compensate for luminance artifacts. This paper extends and improves the earlier work by exploring efficient methodologies for using NAP for face recognition under varied illumination conditions. In particular, we propose a modified NAP formulation and show that NAP training can be simplified for face recognition. Additionally, we suggested a compact framework merging between NAP compensation and eigenface recognition. A series of experiments using the extended YaleB database, and a cross-validation using the PIE CMU and the Oulo databases are performed to validate our proposals.
机译:在不受控制的环境下,光照变化是人脸识别中众所周知的问题之一。文献中已经提出了几种技术来解决这个问题。最近,为了补偿亮度伪影,最初为说话者识别领域开发的一种称为讨厌属性投影(NAP)的技术被引入图像处理。本文通过探索在不同光照条件下使用NAP进行面部识别的有效方法,扩展并改进了早期工作。特别是,我们提出了一种经过改进的NAP公式,并表明可以简化NAP训练来进行人脸识别。此外,我们建议在NAP补偿和特征脸识别之间合并一个紧凑的框架。使用扩展的YaleB数据库进行了一系列实验,并使用PIE CMU和Oulo数据库进行了交叉验证,以验证我们的建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号