首页> 外文期刊>Pattern Analysis and Applications >Robust embedded projective nonnegative matrix factorization for image analysis and feature extraction
【24h】

Robust embedded projective nonnegative matrix factorization for image analysis and feature extraction

机译:强大的嵌入式投影非负矩阵分解技术,用于图像分析和特征提取

获取原文
获取原文并翻译 | 示例

摘要

Nonnegative matrix factorization (NMF) is an unsupervised learning method for decomposing high-dimensional nonnegative data matrices and extracting basic and intrinsic features. Since image data are described and stored as nonnegative matrices, the mining and analysis process usually involves the use of various NMF strategies. NMF methods have well-known applications in face recognition, image reconstruction, handwritten digit recognition, image denoising and feature extraction. Recently, several projective NMF (P-NMF) methods based on positively constrained projections have been proposed and were found to perform better than the standard NMF approach in some aspects. However, some drawbacks still affect the existing NMF and P-NMF algorithms; these include dense factors, slow convergence, learning poor local features, and low reconstruction accuracy. The aim of this paper is to design algorithms that address the aforementioned issues. In particular, we propose two embedded P-NMF algorithms: the first method combines the alternating least squares (ALS) algorithm with the P-NMF update rules of the Frobenius norm and the second one embeds ALS with the P-NMF update rule of the Kullback-Leibler divergence. To assess the performances of the proposed methods, we conducted various experiments on four well-known data sets of faces. The experimental results reveal that the proposed algorithms outperform other related methods by providing very sparse factors and extracting better localized features. In addition, the empirical studies show that the new methods provide highly orthogonal factors that possess small entropy values.
机译:非负矩阵分解(NMF)是一种无监督的学习方法,用于分解高维非负数据矩阵并提取基本特征和固有特征。由于图像数据被描述并存储为非负矩阵,因此挖掘和分析过程通常涉及各种NMF策略的使用。 NMF方法在人脸识别,图像重建,手写数字识别,图像去噪和特征提取方面具有众所周知的应用。最近,已经提出了几种基于正约束投影的投影NMF(P-NMF)方法,并发现它们在某些方面比标准NMF方法具有更好的性能。但是,某些缺陷仍然会影响现有的NMF和P-NMF算法。这些因素包括密集因素,收敛缓慢,学习不良的局部特征以及重建精度低。本文的目的是设计解决上述问题的算法。特别是,我们提出了两种嵌入式P-NMF算法:第一种方法将交替最小二乘(ALS)算法与Frobenius范数的P-NMF更新规则结合在一起,第二种方法将ALS与Frobenius范数的P-NMF更新规则嵌入在一起。 Kullback-Leibler分歧。为了评估所提出方法的性能,我们对四个已知的人脸数据集进行了各种实验。实验结果表明,该算法通过提供稀疏因子并提取更好的局部特征,优于其他相关方法。此外,经验研究表明,新方法提供了具有较小熵值的高度正交因子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号