首页> 外文期刊>Pattern Analysis and Applications >An aperiodic feature representation for gait recognition in cross-view scenarios for unconstrained biometrics
【24h】

An aperiodic feature representation for gait recognition in cross-view scenarios for unconstrained biometrics

机译:非约束生物识别的非周期性特征表示,用于跨场景场景中的步态识别

获取原文
获取原文并翻译 | 示例

摘要

The state-of-the-art gait recognition algorithms require a gait cycle estimation before the feature extraction and are classified as periodic algorithms. Their effectiveness substantially decreases due to errors in detecting gait cycles, which are likely to occur in data acquired in non-controlled conditions. Hence, the main contributions of this paper are: (1) propose an aperiodic gait recognition strategy, where features are extracted without the concept of gait cycle, in case of multi-view scenario; (2) propose the fusion of the different feature subspaces of aperiodic feature representations at score level in cross-view scenarios. The experiments were performed with widely known CASIA Gait database B, which enabled us to draw the following major conclusions, (1) for multi-view scenarios, features extracted from gait sequences of varying length have as much discriminating power as traditional periodic features; (2) for cross-view scenarios, we observed an average improvement of 22 % over the error rates of state-of-the-art algorithms, due to the proposed fusion scheme.
机译:最新的步态识别算法需要在特征提取之前进行步态周期估计,并被分类为周期性算法。由于步态周期检测中的错误,其有效性会大大降低,这可能会发生在非受控条件下获取的数据中。因此,本文的主要贡献是:(1)提出了一种非周期性的步态识别策略,在多视角场景下,无需步态周期的概念即可提取特征。 (2)提出了在交叉视图场景中在分数级别上对非周期性特征表示的不同特征子空间的融合。实验是利用众所周知的CASIA步态数据库B进行的,这使我们能够得出以下主要结论:(1)对于多视图场景,从不同长度的步态序列中提取的特征具有与传统周期性特征一样多的识别能力; (2)对于交叉视图场景,由于提出的融合方案,我们发现,与最新算法的错误率相比,平均提高了22%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号