首页> 外文期刊>Pattern Analysis and Applications >A multi-biometric iris recognition system based on a deep learning approach
【24h】

A multi-biometric iris recognition system based on a deep learning approach

机译:基于深度学习方法的多生物虹膜识别系统

获取原文
获取原文并翻译 | 示例

摘要

Multimodal biometric systems have been widely applied in many real-world applications due to its ability to deal with a number of significant limitations of unimodal biometric systems, including sensitivity to noise, population coverage, intra-class variability, non-universality, and vulnerability to spoofing. In this paper, an efficient and real-time multimodal biometric system is proposed based on building deep learning representations for images of both the right and left irises of a person, and fusing the results obtained using a ranking-level fusion method. The trained deep learning system proposed is called IrisConvNet whose architecture is based on a combination of Convolutional Neural Network (CNN) and Softmax classifier to extract discriminative features from the input image without any domain knowledge where the input image represents the localized iris region and then classify it into one of N classes. In this work, a discriminative CNN training scheme based on a combination of back-propagation algorithm and mini-batch AdaGrad optimization method is proposed for weights updating and learning rate adaptation, respectively. In addition, other training strategies (e.g., dropout method, data augmentation) are also proposed in order to evaluate different CNN architectures. The performance of the proposed system is tested on three public datasets collected under different conditions: SDUMLA-HMT, CASIA-Iris-V3 Interval and IITD iris databases. The results obtained from the proposed system outperform other state-of-the-art of approaches (e.g., Wavelet transform, Scattering transform, Local Binary Pattern and PCA) by achieving a Rank-1 identification rate of 100% on all the employed databases and a recognition time less than one second per person.
机译:由于多模式生物特征识别系统能够处理单峰生物特征识别系统的许多重大局限性,包括对噪声的敏感性,人群覆盖范围,类内变异性,非通用性和易受攻击性,因此已广泛应用于许多实际应用中。欺骗。在本文中,基于构建人的左右虹膜图像的深度学习表示,并融合使用等级融合方法获得的结果,提出了一种高效且实时的多模式生物识别系统。提出的经过训练的深度学习系统称为IrisConvNet,其体系结构是基于卷积神经网络(CNN)和Softmax分类器的组合,以从输入图像中提取区分特征,而无需任何领域知识,其中输入图像表示局部虹膜区域,然后进行分类它进入N类之一。在这项工作中,提出了一种基于反向传播算法和小批量AdaGrad优化方法相结合的判别性CNN训练方案,分别用于权重更新和学习率自适应。此外,还提出了其他训练策略(例如,辍学方法,数据增强),以评估不同的CNN架构。在不同条件下收集的三个公共数据集上测试了所提出系统的性能:SDUMLA-HMT,CASIA-Iris-V3间隔和IITD虹膜数据库。从拟议系统中获得的结果优于所有其他最新方法(例如,小波变换,散射变换,局部二进制模式和PCA),在所有使用的数据库上均达到100%的Rank-1识别率,并且识别时间每人少于一秒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号