首页> 外文期刊>Pattern Analysis and Applications >An efficient fundamental matrix estimation method for wide baseline images
【24h】

An efficient fundamental matrix estimation method for wide baseline images

机译:一种有效的宽基线图像基本矩阵估计方法

获取原文
获取原文并翻译 | 示例

摘要

AbstractFundamental matrix estimation for wide baseline images is significantly difficult due to the fact that the proportion of inliers in putative correspondences is generally very low. Traditional robust fundamental matrix estimation methods, such as RANSAC, will encounter the problems of computational inefficiency and low accuracy when outlier ratio is high. In this paper, a novel robust estimation method called inlier set sample optimization is proposed to solve these problems. First, a one-class support vector machine-based preselection algorithm is performed to efficiently select a candidate inlier set from putative SIFT correspondences according to distribution consistency of features in location, scale and orientation. Then, the quasi-optimal inlier set is refined iteratively by maximizing a soft decision objective function. Finally, fundamental matrix is estimated with the optimal inlier set. Experimental results show that the proposed method is superior to several state-of-the-art robust methods in speed, accuracy and stability and is applicable to wide baseline images with large differences.
机译: Abstract 宽基线图像的基本矩阵估计非常困难,因为推定书信中的惯常数比例通常很低。传统的鲁棒基础矩阵估计方法(如RANSAC)在异常值比率较高时会遇到计算效率低和准确性低的问题。为了解决这些问题,本文提出了一种新颖的鲁棒估计方法,称为内集样本优化。首先,基于位置,比例和方向特征的分布一致性,执行基于一类支持向量机的预选算法,以从推定的SIFT对应关系中有效地选择候选内部值集。然后,通过最大化软决策目标函数来迭代优化拟最优的内部集。最后,使用最佳的内部集估计基本矩阵。实验结果表明,该方法在速度,精度和稳定性方面优于几种先进的鲁棒方法,适用于宽幅,差异较大的基线图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号