首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >One-Shot Neural Architecture Search: Maximising Diversity to Overcome Catastrophic Forgetting
【24h】

One-Shot Neural Architecture Search: Maximising Diversity to Overcome Catastrophic Forgetting

机译:单次神经结构搜索:最大化多样性以克服灾难性遗忘

获取原文
获取原文并翻译 | 示例

摘要

One-shot neural architecture search (NAS) has recently become mainstream in the NAS community because it significantly improves computational efficiency through weight sharing. However, the supernet training paradigm in one-shot NAS introduces catastrophic forgetting, where each step of the training can deteriorate the performance of other architectures that contain partially-shared weights with current architecture. To overcome this problem of catastrophic forgetting, we formulate supernet training for one-shot NAS as a constrained continual learning optimization problem such that learning the current architecture does not degrade the validation accuracy of previous architectures. The key to solving this constrained optimization problem is a novelty search based architecture selection (NSAS) loss function that regularizes the supernet training by using a greedy novelty search method to find the most representative subset. We applied the NSAS loss function to two one-shot NAS baselines and extensively tested them on both a common search space and a NAS benchmark dataset. We further derive three variants based on the NSAS loss function, the NSAS with depth constrain (NSAS-C) to improve the transferability, and NSAS-G and NSAS-LG to handle the situation with a limited number of constraints. The experiments on the common NAS search space demonstrate that NSAS and it variants improve the predictive ability of supernet training in one-shot NAS with remarkable and efficient performance on the CIFAR-10, CIFAR-100, and ImageNet datasets. The results with the NAS benchmark dataset also confirm the significant improvements these one-shot NAS baselines can make.
机译:单次神经结构搜索(NAS)最近成为NAS社区的主流,因为它通过重量分享显着提高了计算效率。然而,单次NAS中的超空网培训范例介绍了灾难性的遗忘,其中训练的每个步骤都可以恶化包含具有当前架构的部分共享权重的其他架构的性能。为了克服这种灾难性遗忘的问题,我们为单次NAS制定了单次NAS的超值培训,因为限制的连续学习优化问题,使得学习当前架构不会降低以前的体系结构的验证精度。解决该约束优化问题的关键是一种基于新颖的搜索的架构选择(NSAS)丢失功能,其通过使用贪婪的新颖性搜索方法来查找最代表性的子集进行正常培训。我们将NSAS损耗函数应用于两个单次NAS基线,并在公共搜索空间和NAS基准数据集中广泛测试它们。我们进一步基于NSAS损耗函数的三个变体,NSA具有深度约束(NSAS-C),以提高可转换性,NSAS-G和NSA-LG以有限数量的约束来处理情况。公共NAS搜索空间的实验表明,NSA和IT变体提高了在一拍NAS中超空网训练的预测能力,在CiFar-10,CiFar-100和Imagenet数据集中具有显着和高效的性能。使用NAS基准数据集的结果还确认了这些单次NAS基线可以制造的显着改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号