...
首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Faster First-Order Methods for Stochastic Non-Convex Optimization on Riemannian Manifolds
【24h】

Faster First-Order Methods for Stochastic Non-Convex Optimization on Riemannian Manifolds

机译:黎曼歧管对随机非凸优化的一阶方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

First-order non-convex Riemannian optimization algorithms have gained recent popularity in structured machine learning problems including principal component analysis and low-rank matrix completion. The current paper presents an efficient Riemannian Stochastic Path Integrated Differential EstimatoR (R-SPIDER) algorithm to solve the finite-sum and online Riemannian non-convex minimization problems. At the core of R-SPIDER is a recursive semi-stochastic gradient estimator that can accurately estimate Riemannian gradient under not only exponential mapping and parallel transport, but also general retraction and vector transport operations. Compared with prior Riemannian algorithms, such a recursive gradient estimation mechanism endows R-SPIDER with lower computational cost in first-order oracle complexity. Specifically, for finite-sum problems with n components, R-SPIDER is proved to converge to an epsilon-approximate stationary point within O(min(n + root n/epsilon(2),1/epsilon(3))) stochastic gradient evaluations, beating the best-known complexity O(n+1/epsilon(4)); for online optimization, R-SPIDER is shown to converge with O(1/epsilon(3)) complexity which is, to the best of our knowledge, the first non-asymptotic result for online Riemannian optimization. For the special case of gradient dominated functions, we further develop a variant of R-SPIDER with improved linear rate of convergence. Extensive experimental results demonstrate the advantage of the proposed algorithms over the state-of-the-art Riemannian non-convex optimization methods.
机译:一阶非凸性黎曼优化算法在包括主成分分析和低秩矩阵完成的结构化机器学习问题中获得了最近的普及。本文提出了一种高效的riemannian随机路径集成差分估计器(R-SPIDER)算法,可以解决有限和在线riemannian非凸起最小化问题。在R-SPIDER的核心是递归半随机梯度估计器,可以在不仅是指数映射和并行传输的情况下准确估计黎曼梯度,而且可以进行一般缩回和矢量传输操作。与先前的riemannian算法相比,这种递归梯度估计机制赋予R-Spider以一定的Oracle复杂性的计算成本较低。具体地,对于N组分的有限和问题,证明R-Spider会聚到O内的epsilon - 近似静止点(min(n +根N / epsilon(2),1 / epsilon(3)))随机梯度评估,击败最着名的复杂性O(n + 1 / epsilon(4));为了在线优化,R-Spider被证明可以通过O(1 / epsilon(3))复杂性,这是我们知识的最佳,这是在线riemananian优化的第一个非渐近结果。对于梯度主导功能的特殊情况,我们进一步开发了R-蜘蛛的变种,具有改善的线性收敛速率。广泛的实验结果展示了所提出的算法在最先进的Riemannian非凸优化方法中的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号