【24h】

Visual Tracking via Dynamic Memory Networks

机译:通过动态内存网络进行视觉跟踪

获取原文
获取原文并翻译 | 示例

摘要

Template-matching methods for visual tracking have gained popularity recently due to their good performance and fast speed. However, they lack effective ways to adapt to changes in the target object's appearance, making their tracking accuracy still far from state-of-the-art. In this paper, we propose a dynamic memory network to adapt the template to the target's appearance variations during tracking. The reading and writing process of the external memory is controlled by an LSTM network with the search feature map as input. A spatial attention mechanism is applied to concentrate the LSTM input on the potential target as the location of the target is at first unknown. To prevent aggressive model adaptivity, we apply gated residual template learning to control the amount of retrieved memory that is used to combine with the initial template. In order to alleviate the drift problem, we also design a "negative" memory unit that stores templates for distractors, which are used to cancel out wrong responses from the object template. To further boost the tracking performance, an auxiliary classification loss is added after the feature extractor part. Unlike tracking-by-detection methods where the object's information is maintained by the weight parameters of neural networks, which requires expensive online fine-tuning to be adaptable, our tracker runs completely feed-forward and adapts to the target's appearance changes by updating the external memory. Moreover, the capacity of our model is not determined by the network size as with other trackers - the capacity can be easily enlarged as the memory requirements of a task increase, which is favorable for memorizing long-term object information. Extensive experiments on the OTB and VOT datasets demonstrate that our trackers perform favorably against state-of-the-art tracking methods while retaining real-time speed.
机译:由于其性能良好和快速速度,最近的视觉跟踪模板匹配方法已经获得了流行。然而,它们缺乏适应目标物体外观的变化的有效方法,使其跟踪精度仍然远离现有技术。在本文中,我们提出了一种动态存储网络,以在跟踪期间将模板调整到目标的外观变化。外部存储器的读取和写入过程由LSTM网络控制,其中搜索功能映射为输入。应用空间注意机制以将LSTM输入集中在潜在目标上,因为目标的位置首先未知。为防止攻击性模型适应性,我们应用门控残余模板学习,以控制用于与初始模板组合的检索到的内存量。为了缓解漂移问题,我们还设计了一个“否定”存储器单元,用于存储分散组的模板,用于抵消来自对象模板的错误响应。为了进一步提高跟踪性能,在特征提取器部分之后添加辅助分类损耗。与逐个检测方法不同,其中对象信息由神经网络的权重参数维护,这需要昂贵的在线微调可适应,我们的跟踪器通过更新外部来运行完全馈送并适应目标的外观更改。记忆。此外,我们的模型的容量不是通过与其他跟踪器的网络大小确定的容量 - 随着任务增加的存储器要求,可以容易地放大容量,这有利于存储长期对象信息。 OTB和VOT数据集的广泛实验表明,我们的跟踪器在保持实时速度的同时对最先进的跟踪方法进行有利地执行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号