首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >A Framework of Composite Functional Gradient Methods for Generative Adversarial Models
【24h】

A Framework of Composite Functional Gradient Methods for Generative Adversarial Models

机译:生成对抗性模型复合功能梯度方法的框架

获取原文
获取原文并翻译 | 示例

摘要

Generative adversarial networks (GAN) are trained through a minimax game between a generator and a discriminator to generate data that mimics observations. While being widely used, GAN training is known to be empirically unstable. This paper presents a new theory for generative adversarial methods that does not rely on the traditional minimax formulation. Our theory shows that with a strong discriminator, a good generator can be obtained by composite functional gradient learning, so that several distance measures (including the KL divergence and the JS divergence) between the probability distributions of real data and generated data are simultaneously improved after each functional gradient step until converging to zero. This new point of view leads to stable procedures for training generative models. It also gives a new theoretical insight into the original GAN. Empirical results on image generation show the effectiveness of our new method.
机译:生成的对抗网络(GAN)通过发电机和鉴别器之间的Minimax游戏培训,以生成模仿观察的数据。虽然被广泛使用,但是,已知GaN培训经验不稳定。本文提出了一种新的生成对抗方法理论,不依赖于传统的最小值制剂。我们的理论表明,通过强有力的鉴别器,可以通过复合功能梯度学习获得良好的发电机,因此在实际数据的概率分布和生成数据之间的几个距离测量(包括KL发散和JS发散)同时提高每个功能梯度步骤直到会聚到零。这个新的观点导致培训生成模型的稳定程序。它还为原来的GaN提供了一种新的理论洞察力。图像生成的经验结果表明了我们新方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号