首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Joint Task-Recursive Learning for RGB-D Scene Understanding
【24h】

Joint Task-Recursive Learning for RGB-D Scene Understanding

机译:RGB-D场景理解的联合任务递归学习

获取原文
获取原文并翻译 | 示例

摘要

RGB-D scene understanding under monocular camera is an emerging and challenging topic with many potential applications. In this paper, we propose a novel Task-Recursive Learning (TRL) framework to jointly and recurrently conduct three representative tasks therein containing depth estimation, surface normal prediction and semantic segmentation. TRL recursively refines the prediction results through a series of task-level interactions, where one-time cross-task interaction is abstracted as one network block of one time stage. In each stage, we serialize multiple tasks into a sequence and then recursively perform their interactions. To adaptively enhance counterpart patterns, we encapsulate interactions into a specific Task-Attentional Module (TAM) to mutually-boost the tasks from each other. Across stages, the historical experiences of previous states of tasks are selectively propagated into the next stages by using Feature-Selection unit (FS-Unit), which takes advantage of complementary information across tasks. The sequence of task-level interactions is also evolved along a coarse-to-fine scale space such that the required details may be refined progressively. Finally the task-abstracted sequence problem of multi-task prediction is framed into a recursive network. Extensive experiments on NYU-Depth v2 and SUN RGB-D datasets demonstrate that our method can recursively refines the results of the triple tasks and achieves state-of-the-art performance.
机译:单眼相机下的RGB-D场景理解是具有许多潜在应用的新兴和具有挑战性的主题。在本文中,我们提出了一种新的任务递归学习(TRL)框架,共同和循环地在其中进行三种代表性任务,其中包含深度估计,表面正常预测和语义分割。 TRL通过一系列任务级交互递归地改进预测结果,其中一次性交叉任务交互被抽象为一个时间阶段的一个网络块。在每个阶段,我们将多个任务序列化为序列,然后递归地执行它们的交互。为了自适应地增强对方模式,我们将交互封装到特定的任务 - 注意模块(TAM)中以相互互动的互动。跨阶段,通过使用特征选择单元(FS-ION)选择性地将先前任务状态的历史经历选择性地传播到下一个阶段,这利用了跨任务的互补信息。任务电平相互作用的序列也沿着粗略尺度空间演化,使得所需的细节可以逐步精制。最后,将多任务预测的任务抽象的序列问题被帧为递归网络。关于Nyu-Deave V2和Sun RGB-D数据集的广泛实验表明,我们的方法可以递归地改进三重任务的结果并实现最先进的性能。

著录项

  • 来源
  • 作者单位

    Nanjing Univ Sci & Technol Sch Comp Sci & Engn PCA Lab Minist Educ Key Lab Intelligent Percept & Syst High Dimens In Nanjing 210094 Peoples R China|Nanjing Univ Sci & Technol Sch Comp Sci & Engn Jiangsu Key Lab Image & Video Understanding Socia Nanjing 210094 Peoples R China;

    Nanjing Univ Sci & Technol Sch Comp Sci & Engn PCA Lab Minist Educ Key Lab Intelligent Percept & Syst High Dimens In Nanjing 210094 Peoples R China|Nanjing Univ Sci & Technol Sch Comp Sci & Engn Jiangsu Key Lab Image & Video Understanding Socia Nanjing 210094 Peoples R China;

    Nanjing Univ Sci & Technol Sch Comp Sci & Engn PCA Lab Minist Educ Key Lab Intelligent Percept & Syst High Dimens In Nanjing 210094 Peoples R China|Nanjing Univ Sci & Technol Sch Comp Sci & Engn Jiangsu Key Lab Image & Video Understanding Socia Nanjing 210094 Peoples R China;

    Tencent AI Lab Nanjing 210094 Peoples R China;

    Nanjing Univ Sci & Technol Sch Comp Sci & Engn PCA Lab Minist Educ Key Lab Intelligent Percept & Syst High Dimens In Nanjing 210094 Peoples R China|Nanjing Univ Sci & Technol Sch Comp Sci & Engn Jiangsu Key Lab Image & Video Understanding Socia Nanjing 210094 Peoples R China;

    Nanjing Univ Sci & Technol Sch Comp Sci & Engn PCA Lab Minist Educ Key Lab Intelligent Percept & Syst High Dimens In Nanjing 210094 Peoples R China|Nanjing Univ Sci & Technol Sch Comp Sci & Engn Jiangsu Key Lab Image & Video Understanding Socia Nanjing 210094 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Task analysis; Estimation; Semantics; Image segmentation; Learning systems; Fuses; Cameras; Depth estimation; surface normal estimation; semantic segmentation; recursive learning; RGB-D scene understanding;

    机译:任务分析;估计;语义;图像分割;学习系统;保险丝;摄像机;深度估计;表面正常估计;语义细分;递归学习;RGB-D场景理解;RGB-D场景理解;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号