首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >A Graph Based Image Interpretation Method Using A Priori Qualitative Inclusion and Photometric Relationships
【24h】

A Graph Based Image Interpretation Method Using A Priori Qualitative Inclusion and Photometric Relationships

机译:一种基于曲线图的图像解释方法,使用先验定性包容和光度关系

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a method for recovering and identifying image regions from an initial oversegmentation using qualitative knowledge of its content. Compared to recent works favoring spatial information and quantitative techniques, our approach focuses on simple a priori qualitative inclusion and photometric relationships such as "region A is included in region B", "the intensity of region A is lower than the one of region B" or "regions A and B depict similar intensities" (photometric uncertainty). The proposed method is based on a two steps' inexact graph matching approach. The first step searches for the best subgraph isomorphism candidate between expected regions and a subset of regions resulting from the initial oversegmentation. Then, remaining segmented regions are progressively merged with appropriate already matched regions, while preserving the coherence with a priori declared relationships. Strengths and weaknesses of the method are studied on various images (grayscale and color), with various intial oversegmentation algorithms (k-means, meanshift, quickshift). Results show the potential of the method to recover, in a reasonable runtime, expected regions, a priori described in a qualitative manner. For further evaluation and comparison purposes, a Python opensource package implementing the method is provided, together with the specifically built experimental database.
机译:本文介绍了一种利用其内容的定性知识从初始过度恢复和识别图像区域的方法。与最近的作品相比,有利于空间信息和定量技术,我们的方法专注于简单的先验定性包容性和诸如“区域A中的光度关系”,“区域A的强度低于区域B”的强度“或“区域A和B描述类似强度”(光度不确定度)。所提出的方法基于两个步骤的不精确图形匹配方法。第一步搜索预期区域之间最好的子图同样候选者和由初始过度解除产生的区域的子集。然后,剩余的分段区域与适当已经匹配的区域逐步合并,同时保留与先验宣布的关系的相干关系。对方法的优点和弱点进行了各种图像(灰度和颜色),具有各种校正过分算法(K-Means,意大率,Quickshift)。结果表明,在合理的运行时,预期区域中恢复的方法的潜力是以定性方式描述的先验。为了进一步评估和比较目的,提供实现该方法的Python OpenSource包,以及专门的实验数据库。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号