首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >A method for attribute selection in inductive learning systems
【24h】

A method for attribute selection in inductive learning systems

机译:归纳学习系统中的属性选择方法

获取原文
获取原文并翻译 | 示例

摘要

A computable measure was developed that can be used to discriminate between attributes on the basis of their potential value in the formation of decision rules by the inductive learning process. This relevance measure is the product of extensions to an information-theoretic foundation that address the particular characteristics of a class of inductive learning algorithms. The measure is also conceptually compatible with approaches from pattern recognition. It is described in the context of a generalized model of the expertise development process, and an experiment is presented in which a significant reduction in the number of attributes to be considered was achieved for a complex medical domain.
机译:开发了一种可计算的度量,该度量可用于通过归纳学习过程在决策规则形成中基于属性的潜在值来区分属性。这种相关性度量是信息理论基础扩展的产物,该信息理论基础解决了一类归纳学习算法的特定特征。该措施在概念上也与模式识别方法兼容。它是在专门知识发展过程的通用模型的上下文中进行描述的,并提出了一个实验,其中针对复杂的医学领域,要考虑的属性数量大大减少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号