首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Toward a model-based Bayesian theory for estimating and recognizing parameterized 3-D objects using two or more images taken from different positions
【24h】

Toward a model-based Bayesian theory for estimating and recognizing parameterized 3-D objects using two or more images taken from different positions

机译:迈向基于模型的贝叶斯理论,以使用从不同位置拍摄的两个或多个图像来估计和识别参数化3D对象

获取原文
获取原文并翻译 | 示例

摘要

A parametric modeling and statistical estimation approach is proposed and simulation data are shown for estimating 3-D object surfaces from images taken by calibrated cameras in two positions. The parameter estimation suggested is gradient descent, though other search strategies are also possible. Processing image data in blocks (windows) is central to the approach. After objects are modeled as patches of spheres, cylinders, planes and general quadrics-primitive objects, the estimation proceeds by searching in parameter space to simultaneously determine and use the appropriate pair of image regions, one from each image, and to use these for estimating a 3-D surface patch. The expression for the joint likelihood of the two images is derived and it is shown that the algorithm is a maximum-likelihood parameter estimator. A concept arising in the maximum likelihood estimation of 3-D surfaces is modeled and estimated. Cramer-Rao lower bounds are derived for the covariance matrices for the errors in estimating the a priori unknown object surface shape parameters.
机译:提出了一种参数化建模和统计估计方法,并显示了用于从两个位置上的校准摄像机拍摄的图像估计3-D对象表面的仿真数据。建议的参数估计是梯度下降,尽管其他搜索策略也是可行的。在块(窗口)中处理图像数据是该方法的核心。在将对象建模为球体,圆柱体,平面和一般二次曲面对象的模型之后,通过在参数空间中搜索以同时确定并使用一对合适的图像区域(每个图像中的一个区域)并使用它们来进行估计,从而进行估计3D表面贴片。推导了两个图像联合似然的表达式,表明该算法是最大似然参数估计器。对3D表面的最大似然估计中产生的概念进行建模和估计。为协方差矩阵推导Cramer-Rao下界,以估计估计先验未知物体表面形状参数时的误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号