首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Computing minimal distances on polyhedral surfaces
【24h】

Computing minimal distances on polyhedral surfaces

机译:计算多面体表面上的最小距离

获取原文
获取原文并翻译 | 示例

摘要

The authors implement an algorithm that finds minimal (geodesic) distances on a three-dimensional polyhedral surface. The algorithm is intrinsically parallel, in as much as it deals with all nodes simultaneously, and is simple to implement. Although exponential in complexity, it can be used with a companion gradient-descent surface-flattening algorithm that produces an optimal flattening of a polyhedral surface. Together, these two algorithms have made it possible to obtain accurate flattening of biological surfaces consisting of several thousand triangular faces (monkey visual cortex) by providing a characterization of the distance geometry of these surfaces. The authors propose this approach as a pragmatic solution to characterizing the surface geometry of the complex polyhedral surfaces which are encountered in the cortex of vertebrates.
机译:作者实现了一种在三维多面体表面上找到最小(测地)距离的算法。该算法本质上是并行的,因为它可以同时处理所有节点,并且易于实现。尽管复杂度呈指数级,但它可以与伴随的梯度下降表面平坦化算法一起使用,该算法可产生多面体表面的最佳平坦度。总之,这两种算法通过提供这些表面的距离几何形状的特征,可以使由数千个三角形表面(猴子视觉皮层)组成的生物表面准确地变平。作者提出这种方法是一种实用的解决方案,用于表征在脊椎动物皮质中遇到的复杂多面体表面的表面几何形状。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号