首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Unsupervised segmentation of textured images by edge detection in multidimensional feature
【24h】

Unsupervised segmentation of textured images by edge detection in multidimensional feature

机译:多维特征中边缘检测的无监督图像分割

获取原文
获取原文并翻译 | 示例

摘要

An algorithm for unsupervised texture segmentation is developed that is based on detecting changes in textural characteristics of small local regions. Six features derived from two, two-dimensional, noncausal random field models are used to represent texture. These features contain information about gray-level-value variations in the eight principal directions. An algorithm for automatic selection of the size of the observation windows over which textural activity and change are measured has been developed. Effects of changes in individual features are considered simultaneously by constructing a one-dimensional measure of textural change from them. Edges in this measure correspond to the sought-after textural edges. Experiments results with images containing regions of natural texture show that the algorithm performs very well.
机译:基于检测小局部区域纹理特征的变化,开发了一种无监督的纹理分割算法。从二维非因果随机场模型中得出的六个特征用于表示纹理。这些功能包含有关八个主要方向上的灰度值变化的信息。已经开发出一种用于自动选择观察窗大小的算法,在该观察窗上测量纹理活动和变化。通过构建一维结构变化的度量,可以同时考虑各个特征变化的影响。该度量中的边缘对应于所寻求的纹理边缘。对包含自然纹理区域的图像进行的实验结果表明,该算法性能很好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号