首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Edge detection and linear feature extraction using a 2-D random field model
【24h】

Edge detection and linear feature extraction using a 2-D random field model

机译:使用二维随机场模型进行边缘检测和线性特征提取

获取原文
获取原文并翻译 | 示例

摘要

The edge-detection problem is posed as one of detecting step discontinuities in the observed correlated image, using directional derivatives estimated with a random field model. Specifically, the method consists of representing the pixels in a local window by a 2-D causal autoregressive (AR) model, whose parameters are adaptively estimated using a recursive least-squares algorithm. The directional derivatives are functions of parameter estimates. An edge is detected if the second derivative in the direction of the estimated maximum gradient is negatively sloped and the first directional derivative and a local estimate of variance satisfy some conditions. Because the ordered edge detector may not detect edges of all orientations well, the image scanned in four different directions, and the union of the four edge images is taken as the final output. The performance of the edge detector is illustrated using synthetic and real images. Comparisons to other edge detectors are given. A linear feature extractor that operates on the edges produced by the AR model is presented.
机译:使用通过随机场模型估计的方向导数,将边缘检测问题提出为检测所观察到的相关图像中的步骤不连续之一。具体来说,该方法包括通过二维因果自回归(AR)模型表示局部窗口中的像素,该模型使用递归最小二乘算法自适应地估计其参数。方向导数是参数估计的函数。如果在估计的最大梯度方向上的二阶导数为负斜率,并且一阶方向导数和方差的局部估计满足某些条件,则将检测到边缘。因为有序边缘检测器可能无法很好地检测所有方向的边缘,所以在四个不同方向上扫描的图像以及四个边缘图像的并集被视为最终输出。边缘检测器的性能使用合成图像和真实图像进行说明。给出了与其他边缘检测器的比较。提出了一种在AR模型产生的边缘上运行的线性特征提取器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号