首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Neural network techniques for object orientation detection. Solution by optimal feedforward network and learning vector quantization approaches
【24h】

Neural network techniques for object orientation detection. Solution by optimal feedforward network and learning vector quantization approaches

机译:用于对象定向检测的神经网络技术。最佳前馈网络和学习矢量量化方法的解决方案

获取原文
获取原文并翻译 | 示例

摘要

The computer-vision problem of determining object orientation from the consensus of orientations of individual symbols or marks is examined. The problem arises in automatic inspection where orientation can be detected from printed text but there is no knowledge of the content of the text. This is a high-dimensional classification problem, and there is a requirement for highly accurate detection and rapid processing. The typical multilayer threshold networks are seen as unsuitable, and the optimal Bayesian detector is derived and found to have the highly parallel structure of a feedforward network. The learning vector quantization neural network method of T. Kohonen (1988) is also applied. Experimental results, comparisons, and a complete implementation are described.
机译:研究了根据单个符号或标记的方向一致确定对象方向的计算机视觉问题。在自动检查中会出现问题,在自动检查中可以从打印的文本中检测到方向,但不了解文本的内容。这是高维分类问题,并且需要高度精确的检测和快速处理。典型的多层阈值网络被认为是不合适的,并且推导了最佳的贝叶斯检测器并发现它具有前馈网络的高度并行结构。还应用了T. Kohonen(1988)的学习矢量量化神经网络方法。描述了实验结果,比较和完整的实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号