首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >On the verification of hypothesized matches in model-based recognition
【24h】

On the verification of hypothesized matches in model-based recognition

机译:基于模型的识别中假设匹配的验证

获取原文
获取原文并翻译 | 示例

摘要

Model-based recognition methods generally use ad hoc techniques to decide whether or not a model of an object matches a given scene. The most common such technique is to set an empirically determined threshold on the fraction of model features that must be matched to data features. Conditions under which to accept a match as correct are rigorously derived. The analysis is based on modeling the recognition process as a statistical occupancy problem. This model makes the assumption that pairings of object and data features can be characterized as a random process with a uniform distribution. The authors present a number of examples illustrating that real image data are well approximated by such a random process. Using a statistical occupancy model, they derive an expression for the probability that a randomly occurring match will account for a given fraction of the features of a particular object. This expression is a function of the number of model features, the number of data features, and bounds on the degree of sensor noise. It provides a means of setting a threshold such that the probability of a random match is very small.
机译:基于模型的识别方法通常使用临时技术来确定对象的模型是否与给定场景匹配。最常见的此类技术是在必须与数据特征匹配的模型特征分数上设置经验确定的阈值。严格推定接受匹配正确的条件。该分析基于将识别过程建模为统计占用问题。该模型假设对象和数据特征对可以被描述为具有均匀分布的随机过程。作者提供了许多示例,说明通过这种随机过程可以很好地逼近真实图像数据。通过使用统计占用模型,他们得出了随机发生的匹配将占特定对象特征给定比例的概率的表达式。此表达式是模型特征数量,数据特征数量以及传感器噪声程度界限的函数。它提供了一种设置阈值的方法,以使随机匹配的可能性非常小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号