首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Learning visual models from shape contours using multiscale convex/concave structure matching
【24h】

Learning visual models from shape contours using multiscale convex/concave structure matching

机译:使用多尺度凸/凹结构匹配从形状轮廓学习视觉模型

获取原文
获取原文并翻译 | 示例

摘要

A novel approach is proposed for learning a visual model from real shape samples of the same class. The approach can directly acquire a visual model by generalizing the multiscale convex/concave structure of a class of shapes, that is, the approach is based on the concept that shape generalization is shape simplification wherein perceptually relevant features are retained. The simplification does not mean the approximation of shapes but rather the extraction of the optimum scale convex/concave structure common to shape samples of the class. The common structure is obtained by applying the multiscale convex/concave structure-matching method to all shape pairs among given shape samples of the class and by integrating the matching results. The matching method, is applicable to heavily deformed shapes and is effectively implemented with dynamic programming techniques. The approach can acquire a visual model from a few samples without any a priori knowledge of the class. The obtained model is very useful for shape recognition. Results of applying the proposed method are presented.
机译:提出了一种用于从相同类别的真实形状样本中学习视觉模型的新颖方法。该方法可以通过归纳一类形状的多尺度凹凸结构来直接获取视觉模型,即,该方法基于以下概念:形状归纳是形状简化,其中保留了感知上相关的特征。简化并不意味着形状的近似,而是提取该类形状样本所共有的最佳比例凸/凹结构。通过对类别的给定形状样本中的所有形状对应用多尺度凸/凹结构匹配方法并整合匹配结果,可以获得通用结构。该匹配方法适用于变形严重的形状,并通过动态编程技术有效地实现。该方法可以从几个样本中获取视觉模型,而无需对该类有任何先验知识。所获得的模型对于形状识别非常有用。提出了应用该方法的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号