首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >The Robust Sequential Estimator: a general approach and its application to surface organization in range data
【24h】

The Robust Sequential Estimator: a general approach and its application to surface organization in range data

机译:稳健的顺序估计器:一种通用方法及其在距离数据中的表面组织中的应用

获取原文
获取原文并翻译 | 示例

摘要

Presents an autonomous, statistically robust, sequential function approximation approach to simultaneous parameterization and organization of (possibly partially occluded) surfaces in noisy, outlier-ridden (not Gaussian), functional range data. At the core of this approach is the Robust Sequential Estimator, a robust extension to the method of sequential least squares. Unlike most existing surface characterization techniques, the authors' method generates complete surface hypotheses in parameter space. Given a noisy depth map of an unknown 3-D scene, the algorithm first selects appropriate seed points representing possible surfaces. For each nonredundant seed it chooses the best approximating model from a given set of competing models using a modified Akaike Information Criterion. With this best model, each surface is expanded from its seed over the entire image, and this step is repeated for all seeds. Those points which appear to be outliers with respect to the model in growth are not included in the (possibly disconnected) surface. Point regions are deleted from each newly grown surface in the prune stage. Noise, outliers, or coincidental surface alignment may cause some points to appear to belong to more than one surface. These ambiguities are resolved by a weighted voting scheme within a 5/spl times/5 decision window centered around the ambiguous point. The isolated point regions left after the resolve stage are removed and any missing points in the data are filled by the surface having a majority consensus in an 8-neighborhood.
机译:提出了一种自主的,统计上可靠的顺序函数逼近方法,用于在嘈杂,异常值(非高斯)的功能范围数据中同时进行参数化和组织(可能部分遮挡)曲面。这种方法的核心是稳健的顺序估计器,它是对顺序最小二乘法的可靠扩展。与大多数现有的表面表征技术不同,作者的方法在参数空间中生成了完整的表面假设。给定未知3D场景的嘈杂深度图,该算法首先选择代表可能表面的适当种子点。对于每个非冗余种子,它使用修改后的Akaike信息准则从一组给定的竞争模型中选择最佳近似模型。使用此最佳模型,每个表面从其种子扩展到整个图像,并对所有种子重复此步骤。那些相对于增长模型显得异常的点不包括在(可能是断开的)表面中。在修剪阶段,从每个新近生长的表面删除点区域。噪声,离群值或重合的表面对齐可能会导致某些点似乎属于多个表面。这些歧义可通过以歧义点为中心的5 / spl times / 5决策窗口内的加权投票方案解决。消除了解析阶段之后剩下的孤立点区域,并通过在8邻域中具有多数共识的表面填充了数据中所有遗漏的点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号