首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Optimal decomposition of convex morphological structuring elements for 4-connected parallel array processors
【24h】

Optimal decomposition of convex morphological structuring elements for 4-connected parallel array processors

机译:四连接并行阵列处理器凸形态结构元素的最优分解

获取原文
获取原文并翻译 | 示例

摘要

A morphological operation using a large structuring element can be decomposed equivalently into a sequence of recursive operations, each using a smaller structuring element. However, an optimal decomposition of arbitrarily shaped structuring elements is yet to be found. In this paper, we have derived an optimal decomposition of a specific class of structuring elements/spl mdash/convex sets/spl mdash/for a specific type of machine/spl mdash/4-connected parallel array processors. The cost of morphological operation on 4-connected parallel array processors is the total number of 4-connected shifts required by the set of structuring elements. First, the original structuring element is decomposed into a set of prime factors, and then their locations are determined while minimizing the cost function. Proofs are presented to show the optimality of the decomposition. Examples of optimal decomposition are given and compared to an existing decomposition reported by Xu (1991).
机译:使用大型结构元素的形态运算可以等效地分解为一系列递归运算,每个序列都使用较小的结构元素。然而,尚未发现任意形状的结构元件的最佳分解。在本文中,我们针对特定类型的机器/ spl mdash / 4连接的并行阵列处理器,推导了特定类别的结构元素/ spl mdash /凸集/ spl mdash /的最佳分解。 4个连接的并行阵列处理器上进行形态学操作的成本是一组结构元素所需的4个连接的移位总数。首先,将原始结构元素分解为一组主要因子,然后在最小化成本函数的同时确定它们的位置。证明证明了分解的最优性。给出了最佳分解的示例,并将其与Xu(1991)报告的现有分解进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号