首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Silhouette-based isolated object recognition through curvature scale space
【24h】

Silhouette-based isolated object recognition through curvature scale space

机译:通过曲率尺度空间的基于轮廓的孤立物体识别

获取原文
获取原文并翻译 | 示例

摘要

A complete, fast and practical isolated object recognition system has been developed which is very robust with respect to scale, position and orientation changes of the objects as well as noise and local deformations of shape (due to perspective projection, segmentation errors and non-rigid material used in some objects). The system has been tested on a wide variety of three-dimensional objects with different shapes and material and surface properties. A light-box setup is used to obtain silhouette images which are segmented to obtain the physical boundaries of the objects which are classified as either convex or concave. Convex curves are recognized using their four high-scale curvature extrema points. Curvature scale space (CSS) representations are computed for concave curves. The CSS representation is a multi-scale organization of the natural, invariant features of a curve (curvature zero-crossings or extrema) and useful for very reliable recognition of the correct model since it places no constraints on the shape of objects. A three-stage, coarse-to-fine matching algorithm prunes the search space in stage one by applying the CSS aspect ratio test. The maxima of contours in CSS representations of the surviving models are used for fast CSS matching in stage two. Finally, stage three verifies the best match and resolves any ambiguities by determining the distance between the image and model curves. Transformation parameter optimization is then used to find the best fit of the input object to the correct model.
机译:已开发出一套完整,快速且实用的隔离物体识别系统,该系统在物体的比例,位置和方向变化以及噪声和形状的局部变形(由于透视投影,分割误差和非刚性)方面非常强大在某些物体中使用的材料)。该系统已经在具有不同形状,材料和表面特性的各种三维物体上进行了测试。灯箱设置用于获取轮廓图像,该轮廓图像被分割以获得被分类为凸形或凹形的对象的物理边界。凸曲线使用它们的四个高阶曲率极值点来识别。为凹曲线计算曲率标度空间(CSS)表示形式。 CSS表示是曲线的自然不变特征(曲率零交叉或极值)的多尺度组织,并且由于对对象的形状没有任何限制,因此可用于非常可靠地识别正确的模型。通过应用CSS长宽比测试,三阶段的粗略到精细匹配算法会在第一阶段修剪搜索空间。尚存模型的CSS表示中的轮廓最大值用于第二阶段的快速CSS匹配。最后,第三阶段通过确定图像和模型曲线之间的距离,验证最佳匹配并解决任何歧义。然后使用转换参数优化来找到输入对象与正确模型的最佳拟合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号