首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Large vocabulary recognition of on-line handwritten cursive words
【24h】

Large vocabulary recognition of on-line handwritten cursive words

机译:在线手写草书单词的大词汇量识别

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a writer independent system for large vocabulary recognition of on-line handwritten cursive words. The system first uses a filtering module, based on simple letter features, to quickly reduce a large reference dictionary (lexicon) to a more manageable size; the reduced lexicon is subsequently fed to a recognition module. The recognition module uses a temporal representation of the input, instead of a static two-dimensional image, thereby preserving the sequential nature of the data and enabling the use of a Time-Delay Neural Network (TDNN); such networks have been previously successful in the continuous speech recognition domain. Explicit segmentation of the input words into characters is avoided by sequentially presenting the input word representation to the neural network-based recognizer. The outputs of the recognition module are collected and converted into a string of characters that is matched against the reduced lexicon using an extended Damerau-Levenshtein function. Trained on 2,443 unconstrained word images (11 k characters) from 55 writers and using a 21 k lexicon we reached a 97.9% and 82.4% top-5 word recognition rate on a writer-dependent and writer-independent test, respectively.
机译:本文提出了一种独立于作者的系统,用于在线手写草书单词的大词汇量识别。系统首先使用基于简单字母特征的过滤模块,将大型参考词典(词典)快速缩小到更易于管理的大小;缩小的词典随后被馈送到识别模块。识别模块使用输入的时间表示,而不是静态的二维图像,从而保留数据的顺序性质并启用时延神经网络(TDNN);这样的网络先前在连续语音识别领域已经成功。通过将输入单词表示顺序呈现给基于神经网络的识别器,可以避免将输入单词显式分割为字符。收集识别模块的输出,并使用扩展的Damerau-Levenshtein函数将其转换为与精简词典匹配的字符串。对来自55位作者的2,443个不受约束的单词图像(11 k个字符)进行了训练,并使用21 k个词典,在依赖于作者的测试和与作者无关的测试中,我们分别获得了97.9%和82.4%的前5名单词识别率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号